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Introduction

® Many political and economic outcomes of interest can be measured
through quantitative variables

® As many common outcomes have a qualitative, or categorical,
structure:
— Choosing between voting or not

— Choosing which party to vote

— Reporting own interest in politics

® |f we want to analyze quantitatively these outcomes, basic regression
models are not appropriate



@ Binary choice models

@® Linear Probability Model
© Interactions

O Logit model

@ Probit model

@ Model comparison

@ Multinomial models

@® Ordered choice models



Binary choice models

® \We want to understand how individual characteristics, x (e.g. gender,
age, income), predict electoral participation, y

® \We use microdata from Round 10 of the European Social Survey,
which asks ‘Did you vote in the last national election?’

® Two possible, mutually exclusive answers: ‘No’ (0) or Yes (1)

® \oting is a binary random variable Y ~ Bernoulli (p)

)1 with prob. p
= 0 with prob.1—p


https://ess-search.nsd.no

Modelling binary outcomes

® How to evaluate the impact of x on y?
® We could regress iy on x to estimate the coefficients 3

® Individual's i probability of voting is then a function of his/her
characteristics, to be modeled through any proper functional form F (+):

pi = Pr(yi = 1|x) =F (x;8)

® Three popular forms for F (-) are available:

Model Functional form Probability p Marginal effect of x;
LPM Linear function: f (+) f(x'B)=x'p B;
Logit Logistic cdf: A (-) A(X'B) = % A('B){1-A('B)}B;

Probit Std. normal cdf: @ () O ('B) = /Xlﬁ(p(z) dz ¢ (x'B) B

—00




An example in A (code fully commented on BBoar
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11
12
13

// access the European Social Survey data portal at https://ess
—-search.nsd.no

// download the dataset "ESS10 - integrated file, edition 3.1"
in STATA format (.dta) after registering to the website

// store it into a proper location on your laptop

clear all

cd "/Users/francescomattioli/Library/CloudStorage/OneDrive—
UniversitaCommercialelLuigiBocconi/PhD/TA/20612 — Political
Science/stata"

use "ESS10/ESS10.dta"

// We want to study the socio-demographic determinants of voter
participation among Italians

// We are interested in variable "vote"

codebook vote // Is vote a suitable binary variable?

recode vote (2 = 0) (3/.z = .), generate (turnout)

label variable turnout "Turnout (binary)"

label define turnout_labels 0 "No" 1 "Yes"

label values turnout turnout_labels
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// Let's choose some covariates of interest, e.g. age, gender,
education, and income

// Clean them in the same way, but more quickly

clonevar age = agea if agea < . // age
clonevar gender = gndr // gender (no
need to clean it)
clonevar educ_years = eduyrs if eduyrs <= 30 // years of
education (few very high values - outliers?)
clonevar income_d = hinctnta if hinctnta < . // deciles of

household net income

// Let's focus on Italy
keep if cntry=="IT"

// Finding variables of interest:

// — read the codebook provided with the dataset

// — explore variables using STATA's data screening commands
// — type keywords in the variable list (on the right of STATA'

s interface) and explore the variables retained



summarize i.turnout age i.gender educ_years i.income_d, vsquish

Variable | Obs Mean Std. dev Min Max
_____________ o
turnout |
No | 2,366 .239645 .426957 0 1
Yes | 2,366 .760355 .426957 0 1
age | 2,597 51.58568 18.68979 15 90
gender |
Male | 2,640 .475 .4994692 0 1
Female | 2,640 - 525 .4994692 0 1
educ_years | 2,547 12.43659 4.239423 0 28
income_d |
J - 1st d.. | 1,627 .0547019 .2274674 0 1
R - 2nd d.. | 1,627 .1290719 .3353826 0 1
€ = Fwel clos | 1,627 .1567302 .363658 0 1
M - 4th d | 1,627 .1352182 .3420616 0 1
_____________ R EE————
F - 5th d | 1,627 .1155501 .3197829 0 1
S - 6th d | 1,627 .1180086 .3227175 0 1
K - 7th d | 1,627 .122311 .3277454 0 1
P - 8th d | 1,627 .0823602 .2749972 0 1
D - 9th d | 1,627 .0590043 .2357052 0 1
_____________ o
H - 10th | 1,627 .0270436 .1622605 0 1



Linear Probability Model (LPM)

® Probability of voting is modelled as a linear function of x, and
estimated by Ordinary Least Squares (OLS):

Pr(y;=1|x) =x/3
® PROs:
— OLS estimation is quick and straightforward
— Intuitive and direct interpretation of marginal effects
— In practice very similar to non-linear models (as n — o0)

® CONs:
— Predicted probabilities outside the unit interval (p < 0 orp > 1)

— Standard errors are heteroskedastic (Var (g]x;) = 07?)
— A one-unit increase in X; changes y by B]’ regardless of the starting
value of x; (constant marginal effects): effects are estimated more

(less) precisely near (away from) the center of the distribution of x;



LPM: problems

F(x)
¢

Linear function




regress turnout age i.gender

educ_years i.income_d

Source | SS df MS Number of obs = 1,461
4 F (12, 1448) = 8.02
Model | 14.8504404 12 1.2375367 Prob > F = 0.0000
Residual | 223.547917 1,448 .154383921 R-squared = 0.0623
+ Adj R-squared = 0.0545
Total | 238.398357 1,460 .163286546 Root MSE .39292
turnout | Coefficient Std. err. iE P>|t| [95% conf. interval]
age | .0022124 .0006678 Fo3l 0.001 .0009024 .0035224
|
gender
Female | -.0269749 .0207815 -1.30 0.194 -.0677401 .0137902
educ_years | .015086 .0027841 5.42 0.000 .0096246 .0205474
|
income_d |
R - 2nd decile | .0260417 .0522308 0.50 0.618 -.0764144 .1284978
C - 3rd decile | .1445538 .0509095 2.84 0.005 .0446895 .244418
M - 4th decile | .1588765 .0523927 3,03 0.002 .0561029 .2616501
F - 5th decile | .0939942 .053654 i,7% 0.080 -.0112538 .1992421
S - 6th decile | .1288264 .0538023 2.39 0.017 .0232876 .2343652
K - 7th decile | .2251418 .0532091 4.23 0.000 .1207666 .3295171
P - 8th decile | .2104106 .0573682 3.67 0.000 .097877 .3229442
D - 9th decile | .1999662 .0610336 3.28 0.001 .0802425 .31969
H - 10th decile | .1429715 .0782535 1.83 0.068 -.0105308 .2964737
|
cons | .3679212 .0729288 5.04 0.000 .2248638 .5109786




predict turnout_pr, xb // compute predicted probabilities and check their

distribution

capture count if (turnout_pr < 0 | turnout_pr > 1) & turnout_pr

observations have a predicted probability outside the unit interval

display "LPM predictions outside unit interval: “r(N)'"

LPM predictions outside unit interval: 26

summarize turnout_pr

Variable | Obs Mean std. dev. Min

Max

turnout_pr | 1,461 .7946612 .100854 .5230744
estat hettest
Breusch-Pagan/Cook-Weisberg test for heteroskedasticity
Assumption: Normal error terms
Variable: Fitted values of turnout

HO: Constant variance

chi2 (1) = 79.20
Prob > chi2 = 0.0000

1.087262

// count how many



LPM: marginal effects

® |n LPM they correspond to the estimated BOLS coefficients

® |nterpretation: since the outcome is binary, BOLS is interpreted as the
change in the probability of y =1

® An example based on previous STATA output:

— Categorical variables: individuals with income in the 5t decile have
a non-significantly higher probability of voting than those in the 15t
decile by ~ 9 percentage points (pp) — not by 9%!

— Continuous variables: an additional year of age significantly
increases the probability of voting by ~ 0.2 pp (regardless of the
starting age)

margins i.varname // predicted values of y for each catergory of
varname (categorical)
margins, at(varname = #) // predicted values of y at specified levels of

varname (continuous)
margins, dydx(varlist) // marginal effect of variables in varlist



Interactions and factor-variable notation

® The effect of x; on y might differ depending on the level of x;: this
requires entering non-linear terms in the regression, i.e. interacting

variables

® |[nteracting means multiplying two or more variables, thus generating
additional coefficients that require careful interpretation

® STATA's factor-variable operators, combined with command
margins, simplify this task

Operator

Description

i.varname
c.varname
varname#varname
varname##varname

indicators for each category of varname
varname treated as continuous
interaction of two variables

interacting variables and their interaction

® Three forms of interaction

are possible



Interaction 1: continuous X continuous

. regress turnout c.age##c.educ_years, noheader

turnout | Coefficient Std. err. t P>t [95% conf. interval]

age ; .0015524 .0015347 1.01 0.312 -.0014572 .004562

educ_years | .0151716 .0071382 2.13 0.034 .0011735 .0291697
c.age#c.educ_years : .0001101 .0001173 0.94 0.348 -.0001199 .00034
_cons : .4220867 .0997573 4.23 0.000 .2264608 .6177126

® B.ge: one more year of age increases turnout by ~ .16 pp when
educ_years is zero

® Beducyears: one more year of education increases turnout by ~ 1.5
pp when age is zero

® Bageseduc_years: One more year of age increases turnout by ~ .01 pp
for every additional year of educ_years (or viceversa)



Interaction 1: continuous X continuous

margins, at (age=(18(10)90) educ_years=(8 13 15))

marginsplot, recastci(rarea) legend(title("Education years") order(l "lst
quartile" 2 "median" 3 "3rd quartile"))

Adjusted predictions with 95% Cls

c
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Age of respondent, calculated



Interaction 2: continuous X categorical

. regress turnout i.gender##c.educ_years, noheader

turnout | Coefficient Std. err. t P>|t| [95% conf. interval]
gender |
Female | -.12677 .0537889 =236 0.019 -.2322503 -.0212897
educ_years | .0119892 .0030309 3.96 0.000 .0060457 .0179327
|
gender#c.educ_years |
Female | .0077347 .0040556 1.91 0.057 -.0002183 .0156877
|
_cons | .6309944 .0407287 15.49 0.000 .5511254 .7108635

® PBremale: Women have a smaller turnout than men by ~ .13 pp when
educ_years is zero

® Beduc_years: one more year of education increases turnout by ~ 1.2
pp for men

® Bgender#educ_years: Women have a larger turnout than men by ~ .8
pp for every additional year of educ_years



Interaction 2: continuous X categorical

margins i.gender, at (educ_years=(0(3)28))

marginsplot, recastci (rarea) legend(title("Gender"))

Adjusted predictions of gender with 95% Cls

—e— Female
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Years of full-time education completed



Interaction 3: categorical X categorical

. regress turnout i.gender##i.income_d, noheader

turnout | Coefficient Std. err. t P>t [95% conf. intervall
gender |
Female | -.2770398  .0910069 -3.04  0.002 ~.4555563  -.0985234
|
income_d |
R - 2nd decile | -.1397849  .0848434 -1.65 0.100 -.3062114 0266415
C - 3zd decile | .012596  .0816821 0.15 0.877 -.1476293 1728214
M - 4th decile |  .0506912  .0823444 0.62 0.538 -.1108332 .2122157
F - 5th decile | -.0683564  .0839772 -0.81  0.416 -.2330837 096371
S - 6th decile | -.00253  .0819555 -0.03  0.975 -.1632916 .1582315
K - 7th decile |  .0610183  .0841135 0.73  0.468 -.1039764 2260129
P - 8th decile | .0611954  .0865995 0.71  0.480 -.1086757 .2310666
D - 9th decile |  .0735484  .0913503 0.81 0.421 -.1056417 .2527385
H - 10th decile |  .0882852  .1164288 0.76  0.448 -.1400982 3166687
|
gender#income_d |
Female#R - 2nd decile |  .2652404  .1083635 2.45  0.014 .0526777 .4778032
Female#C - 3rd decile |  .2307195  .1049419 2.20 0.028 .0248684 .4365706
Female#M - 4th decile |  .1934819  .1068558 1.81  0.070 -.0161234 .4030872
Female#F - 5th decile |  .2918858  .1098268 2.66 0.008 .0764527 5073189
Female#S - 6th decile |  .2402416  .1097054 2.19  0.029 .0250466 .4554365
Female#K - 7th decile |  .3143319  .1082912 2.90  0.004 .1019109 5267529
Female#P - 8th decile |  .3113536  .1173101 2.65 0.008 .0812414 5414658
Female#D — 9th decile |  .2750886  .1239788 2.22 0.027 .0318954 5182819
Female#H — 10th decile |  .2459394  .1547424 1.59  0.112 -.0575989 5494776
|
cons |  .8064516  .0717715 11.24  0.000 6656666 9472366




Interaction 3: categorical X categorical

® Bremale: Women have a smaller turnout than men by ~ .28 pp when
income_d is zero

° Bl@th,decilei men in the 10t" income decile have a higher turnout
by ~ 9 pp than men in the 1t decile (generalizes to other categories of
income_d)

° ,ggender#mth,decilei women in the 10" income decile have a larger
turnout than men in the same decile by ~ .25 pp compared to the
difference between women and men in the 15 decile (hint: think about
a Diff-in-Diff coefficient; generalizes to other categories of income_d))



Interaction 3: categorical X categorical

margins i.income_d#i.gender

marginsplot, xlabel(, angle(45)) legend(title ("Gender"))

Adjusted predictions of income_d#gender with 95% Cls

Gender
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Linear prediction
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Household’s total net income, all sources



Logit model and logistic regression

® To overcome the problems of LPM, the probability of voting can be
modelled as a logistic function of x:

/
eX'B

szr(y=1Ix>:A(x’B>=W

® The probability p of any binary outcome can alternatively be
represented by means of the associated odds 1%

® The logistic unit model (hence logit) expresses the log-odds of the
outcome as a linear function of x (easier to work with, being a
log-linear model):

logit (p) = In (161?) =x'p

® The two notations are equivalent and interchangeably referred to as
logit model, the only difference lies in the interpretation of 3



Logit: solution to LPM problems

= | ogistic cdf
Linear function

e Constrains probabilities between their natural boundaries (0 <p < 1):
xg@mPr (yi=1lx) =0 xli?wpr (yi=1lx) =1

® Marginal effects differ with the point of evaluation x;



Logit: estimation

® |inear models are estimated by OLS: the estimated BOLS minimizes the
residual sum of squares of the model (the coefficient that leads to the
smallest error term)

® Non-linear models (also probit) are estimated by Maximum Likelihood
(ML): the final Byprp maximizes the (log-)likelihood function (the
coefficient that makes most likely the sample being analyzed)

® Computationally more demanding than OLS: starts with a guess Bo
and computes the likelihood, adjusts the initial guess and re-iterates
the computation of the likelihood until it converges to the BMLE that
makes the likelihood highest

® ML estimates are less reliable than OLS estimates in small samples

® Two ways to estimate a logit model in STATA



. logit turnout age i.gender educ_years i.income_d

Iteration 0: Log likelihood = -741.77176
Iteration 1: Log likelihood = -697.04399
Iteration 2: Log likelihood = -694.84045
Iteration 3: Log likelihood = -694.83169
Iteration 4: Log likelihood = -694.83169
Logistic regression Number of obs = 1,461
LR chi2(12) = 93.88
Prob > chi2 = 0.0000
Log likelihood = -694.83169 Pseudo R2 = 0.0633
turnout | Coefficient Std. err. z P>|z| [95% conf. interval]
age | .0162673 .0044331 3.67 0.000 .0075786 .0249561
I
gender |
Female | -.1801431 .1361288 -1.32 0.186 —.4469506 .0866644
educ_years | .1080394 .020023 5.40 0.000 .068795 .1472838
[
income_d |
R - 2nd decile | .1105034 .2810715 0.39 0.694 —-.4403866 .6613935
C - 3rd decile | .7045156 .2867744 2.46 0.014 .1424481 1.266583
M - 4th decile | .8012036 .3029256 2.64 0.008 .2074803 1.394927
F - 5th decile | .4087714 .2984958 137 0.171 -.1762696 .9938124
S - 6th decile | .594014 .3083027 1-93 0.054 -.0102481 1.198276
K - 7th decile | 1.381398 -3417502 4.04 0.000 .7115801 2.051216
P - 8th decile | 122115 o HTHANEE 27 0.001 .4892687 1-932022
D - 9th decile | 1.173607 .4058888 2.89 0.004 .3780799 1.969135
H - 10th decile | .7342881 .5498955 1.34 0.182 —.3434873 1.812064
|
cons | -1.356762 .4661195 =2 il 0.004 —-2.270339 —.4431842




Logit: marginal effects

® |n non-linear models BMLE coefficients do not correspond to marginal
effects

® The marginal effect of x; is the slope of a probability curve evaluated
at specific values of x and E (non-constant marginal effects):
— The sign of the effect is the same as that of Ej

— The magnitude of the effect is A (x’ﬁ) {1 —A (x’@) }B\]

® Evaluations point must be chosen when reporting results from
non-linear models

® |t is possible to compare directly the relative effects of pairs of
regressors (e.g. being in the 10t" income decile corresponds to
.734/.108 =~ 7 more years spent in eduction)



. logit turnout age i.gender educ_years i.income_d, or
Iteration 0: Log likelihood = -741.77176
Iteration 1: Log likelihood = -697.04399
Iteration 2: Log likelihood = -694.84045
Iteration 3: Log likelihood -694.83169
Iteration 4: Log likelihood -694.83169
Logistic regression Number of obs = 1,461
LR chi2(12) = 93.88
Prob > chi2 = 0.0000
Log likelihood = -694.83169 Pseudo R2 = 0.0633
turnout | Odds ratio Std. err. z P>|z| [95% conf. interval]
age | 1.0164 .0045058 3.67 0.000 1.007607 1.02527
|
gender |
Female | .8351507 .113688 =132 0.186 .6395755 1.090531
educ_years | 1.114092 .0223075 5.40 0.000 1.071217 1.158683
I
income_d |
R - 2nd decile | 1.11684 - JLIGUZ 039 0.694 .6437875 1.93749
C - 3rd decile | 2.022867 .5801063 2.46 0.014 1.153093 3.548706
M - 4th decile | 2.228221 .6749853 2.64 0.008 1.230574 4.03468
F - 5th decile | 1.504968 .4492265 137 0.171 .8383919 2.701514
S - 6th decile | 1.811244 .5584114 1.93 0.054 .9898042 3.314399
K - 7th decile | 3.980463 1.360324 4.04 0.000 2.037208 7.777355
P - 8th decile | 3.391087 1.266286 327 0.001 1.631123 7.050032
D - 9th decile | 3232637 1.312497 2.89 0.004 1.45948 7.164475
H - 10th decile | 2.083998 1.145981 1.34 0.182 .7092925 6.12307
I
cons | .2574933 .1200226 =291 0.004 .1032772 .6419889

Note: _cons estimates baseline odds.



Logit: marginal effects

e Alternatively, E]- is interpreted as the effect of a one-unit change in x;
on logit (p) = In ( pp)

e The transformation ¢Pi (also called odds-ratio) gives the multiplicative

effect of a one-unit change in x; on the odds %
— oB > 1 implies that the odds of voting are ePi times larger; the odds
of voting increase by 100 (eﬁf - 1) %

— B <1 (but always > 0!) implies that the odds of voting decrease
by a factor of eﬁf the odds of voting decrease by 100 (1 — eﬁf) Yo

® |t is essential to know the starting values of the odds to quantify
changes in probabilities correctly



Logit: marginal effects

® Because marginal effects depend on the point of evaluation, and if
odds-ratios remain difficult to interpret, it is recommended to
summarize marginal effects otherwise. Three common variants:
— Average marginal effect: average of marginal effects for each
individual
— Marginal effects at the mean: marginal effects for the average
individual (i.e. individual with average characteristics)

— Marginal effects at representative value: marginal effects for a
representative individual (i.e. individual with representative
characteristics)

® To compute marginal effects of other kind of changes in x; (not just
one-unit changes) use prchange varlist

® |t is possible to compute predicted probabilities as seen in the OLS case

(margins i.varlist ormargins, at(c.varlist = #))



. margins, dydx(x) // average marginal effects of each variable

Average marginal effects Number of obs = 1,461
Model VCE: OIM

Expression: Pr(turnout), predict ()
dy/dx wrt: age 2.gender educ_years 2.income_d 3.income_d 4.income_d 5.income_d 6.income_d 7.
income_d 8.income_d 9.income_d 10.income_d

Delta-method

|
| dy/dx std. err. z P>|z| [95% conf. interval]
age | .0024823 .0006697 3.71 0.000 .0011697 .0037949

|

gender

Female | -.0274486 .0206816 =1.33 0.184 -.0679838 .0130866
educ_years | .0164861 .0029881 5.52 0.000 .0106297 .0223426

|

income_d |
R - 2nd decile | .0229247 .0587337 0.39 0.696 -.0921914 .1380407
C - 3rd decile | .1293056 .0558197 2.32 0.021 .0199011 .2387102
M - 4th decile | .1437221 .0571827 2.51 0.012 .0316459 .2557982
F - 5th decile | .080091 .0597827 1.34 0.180 -.0370809 .1972629
S - 6th decile | .1118177 .0597302 1.87 0.061 -.0052514 .2288869
K - 7th decile | .2135951 .0557563 3.83 0.000 .1043149 .3228754
P - 8th decile | .1970155 .0594668 3.31 0.001 .0804627 .3135684
D - 9th decile | .1917146 .0627796 3.05 0.002 .0686688 .3147604
H - 10th decile | .1338327 .0905325 1.48 0.139 —.0436079 .3112732

Note: dy/dx for factor levels is the discrete change from the base level.



. margins, dydx(x) atmeans noatlegend // marginal effects of each variable for the average
individual

Conditional marginal effects Number of obs = 1,461
Model VCE: OIM

Expression: Pr(turnout), predict ()
dy/dx wrt: age 2.gender educ_years 2.income_d 3.income_d 4.income_d 5.income_d 6.income_d 7.
income_d 8.income_d 9.income_d 10.income_d

| Delta-method

| dy/dx std. err. % P>|z| [95% conf. interval]
age | .0024602 .0006616 8:72 0.000 .0011635 .0037569

|

gender

Female | -.0271832 .0204741 =i,33 0.184 -.0673118 .0129453
educ_years | .0163395 .0029453 5,59 0.000 .0105667 .0221122

|

income_d |
R - 2nd decile | .0234455 .0601247 0-39 0.697 -.0943967 .1412877
€ = 3rd decile | .1305049 .0568114 2.30 0.022 .0191565 .2418533
M - 4th decile | .1447572 .0580837 2.49 0.013 .0309152 .2585991
F - 5th decile | .081365 .0609014 1.34 0.182 -.0379997 .2007296
S - 6th decile | .1131272 .0606835 1.86 0.062 -.0058102 .2320646
K - 7th decile | .2128163 .0565676 3.76 0.000 .1019458 .3236868
P - 8th decile | .1968276 .0600304 3.28 0.001 .0791701 .3144851
D - 9th decile | .1916939 .0631545 3.04 0.002 .0679134 .3154743
H - 10th decile | .1349877 .0905552 1.49 0.136 -.0424973 .3124726

Note: dy/dx for factor levels is the discrete change from the base level.



. margins, dydx(x) at(age = 30 gender = 1 educ_years = 10 income_d = 4) noatlegend // marginal
effects of each variable for a representative individual (e.g. 30-year-old woman with 10
years of education and income in 4th decile)

Conditional marginal effects Number of obs = 1,461
Model VCE: OIM

Expression: Pr(turnout), predict ()
dy/dx wrt: age 2.gender educ_years 2.income_d 3.income_d 4.income_d 5.income_d 6.income_d 7.
income_d 8.income_d 9.income_d 10.income_d

Delta-method

|
| dy/dx std. err. z P>|z| [95% conf. interval]
age | .0031793 .0010799 2.94 0.003 .0010627 .0052959

|

gender

Female | -.0366504 .0278018 =1,32 0.187 -.091141 .0178401
educ_years | .0211153 .0052713 4.01 0.000 .0107837 .031447

|

income_d |
R - 2nd decile | .0271331 .0691807 0.39 0.695 -.1084586 .1627249
C - 3rd decile | .1615442 .0672301 2.40 0.016 .0297756 .2933128
M - 4th decile | .1808622 .0695863 2.60 0.009 .0444757 .3172488
B = G ceeile | .0975985 .0717145 1.36 0.174 -.0429593 .2381563
S - 6th decile | .1384688 .072346 1.91 0.056 -.0033268 .2802644
K - 7th decile | .2783284 .0695151 4.00 0.000 .1420812 .4145756
P - 8th decile | .2546212 .0750535 3,39 0.001 .1075191 .4017233
D - 9th decile | .2471179 .0800974 3.09 0.002 .0901299 .404106
H - 10th decile | .1675816 .1154887 1.45 0.147 -.0587721 .3939353

Note: dy/dx for factor levels is the discrete change from the base level.



® Another popular method to model the probability of voting non-linearly
is through a standard normal function of x:

B 1
—o0 /27T

® This is called probability unit model (hence probit)

p=Pr(y=1jx) =@ (¥'8) = e#dz

® Similar to logit model:
— Both densities are symmetric around the mean (bell-shaped)

— Both models are estimated by maximum likelihood

— Both have non-constant marginal effects



Probit: a logit with thinner tails

= | ogistic cdf
= Std. normal cdf
Linear function

F(x)




Probit: marginal effects

The marginal effect of x; depends on the specific values of x and ,@:

1 e*(xgﬁ)2 E
V21T /

® A one-unit change in x; has an effect of E] on the z-score of y
(measurement units of a standard normal distribution)

Unlike the logit model, the probit model does not allow a
transformation of variables that makes coefficients easier to interpret

® When reporting probit results it is recommended to resort on margins
directly to compute interpretable predicted probabilities or marginal
effects (STATA syntax seen for logit applies also for probit)



. probit turnout age i.gender educ_years i.income_d

// probit model estimation

Iteration 0: Log likelihood = -741.77176
Iteration 1: Log likelihood = -695.86802
Iteration 2: Log likelihood = -695.31477
Iteration 3: Log likelihood = -695.31474
Probit regression Number of obs = 1,461
LR chi2(12) = 92.91
Prob > chi2 = 0.0000
Log likelihood = -695.31474 Pseudo R2 = 0.0626
turnout | Coefficient Std. err. z P>|z| [95% conf. interval]
age | .0089451 .0024794 3.61 0.000 .0040856 .0138046
I
gender |
Female | -.1030726 .0778016 =il 37 0.185 —.2555608 .0494157
educ_years | .0595093 .01103 5.40 0.000 .0378908 .0811278
[
income_d |
R - 2nd decile | .0633083 .1730522 0.37 0.714 -.2758679 .4024845
C - 3rd decile | .4109274 .1729947 2.38 0.018 .071864 .7499908
M - 4th decile | .4650742 .1807062 257 0.010 .1108966 .8192518
F - 5th decile | .2486845 -1814353 1-37 0.170 -.1069221 .6042912
S - 6th decile | .3590502 .1850274 14 0.052 -.0035969 -7216973
K - 7th decile | .7851377 .1946791 4.03 0.000 .4035736 1.166702
P - 8th decile | .7105861 o 21258 235 0.001 .2943763 1.126796
D - 9th decile | .6807951 o 229ERID 2.96 0.003 ZIVLEZI 1.131437
H - 10th decile | .4433589 .3046471 1.46 0.146 —-.1537384 1.040456
[
cons | -.7026203 .2651352 -2.65 0.008 -1.222276 —-.1829649




Comparing binary choice models

The real choice is between linear and non-linear models

Different coefficients across binary choice models do not imply different
substantive effects, because they are approximately related:

Brogit = 4BoLs
Bprovit = 2.5B0Ls
ﬁLagit ~ 1.68probit

Different marginal effects and probabilities from probit and logit arise
when extreme values of x’3 are considered, or the distribution of yis
highly skewed

A set of statistics help identifying the ‘best’ model:
— Higher log-likelihood at convergence
— Higher Pseudo-R?

— Higher percentage of correclty classified (estat
classification after estimation)



Comparing predicted probabilities

1 ] 3

.81

64 —— Logit prediction
— Probit prediction

Linear prediction

44 + Observed turnout
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Multinomial models

Now we want to understand how individual characteristics predict
voting decisions across different parties (nominal choices)

The outcome variable presents k = 1, ..., m different categories, each
corresponding to a different party

The binary logic can be extended so as to encompass all choices faced
by voting individuals; rather than one, we have m binary variables for

each observation y;
Y fy=k
70 iy =k

Individual's i probability of voting for party k is:

pix = Pr(yi = k|x;) = Fi (x;,0)

All probabilities m must sum to one: Y /' | Fy (x;,0) =1



fre prtvtdit // categorical variable recording the party voted in
the last general elections (2018); parties are not sorted in any particular order;
many of them were just voted by a few respondents

generate coalition = . // create a new variable that aggregates parties
according to coalition (center-left, center-right, five star, others)

replace coalition = 1 if inlist (prtvtdit,2,7,11,14) // center-left coalition

replace coalition = 2 if inlist (prtvtdit,3,4,5,8) // center-right coalition

replace coalition = 3 if inlist (prtvtdit,1) // five star movement

replace coalition = 4 if coalition== . & prtvtdit < .a // other minor parties

label variable coalition "Electoral coalition" // create labels for the new

variable following the usual procedure

label define coalition_labels 1 "Center-left" 2 "Center-right" 3 "Five star movement" 4 "
Others"

label values coalition coalition_labels

tab prtvtdit coalition // check that parties have been sorted correctly

// according to official statistics the five star movement got, as a single party, a
plurality of votes in 2018; its vote shares were particularly high in Southern and
Insular Italy

// let's analyze the probability that respondents from Southern and Insular Italy reported
to have voted for different coalitions

fre region // categorical variable recording the Italian NUTS 1
areas of residence

generate res_south_insular = (region == "ITF" | region == "ITG") if region != "" //
fast way to create a dummy variable
label variable res_south_insular "Southern/Insular resident"



Multinomial logit model

Fi (+) can not be a linear function in a multinomial model

The probability of voting for party k can be modelled using a variation
of the logistic function seen before:

p ' o~ B
pe=Pr(y =jlx) = W

The multinomial logit model is estimated by ML

In binary models the choice of either category is naturally opposed to
the other: estimation of either probability gives also the other
probability

In multinomial models we have m categories, each with its own
probability: it is sufficient to estimate m — 1 probabilities, but a
baseline category must be chosen



. mlogit coalition res_south_insular, baseoutcome (1) // multinomial logit model;
center-left as baseline

Iteration 0: Log likelihood = -1313.532
Iteration 1: Log likelihood = -1282.4087
Iteration 2: Log likelihood = -1282.0117
Iteration 3: Log likelihood = -1282.0117

Multinomial logistic regression Number of obs = 1,078
LR chi2(3) = 63.04
Prob > chi2 = 0.0000
Log likelihood = -1282.0117 Pseudo R2 = 0.0240
coalition | Coefficient Std. err. 12 P>|z| [95% conf. interval
Center_left | (base outcome)

Center_right

|
res_south_insular | -.1857657 .1659557 =il,12 0.263 -.5110328 .1395014
_cons | .1559128 .0873862 1.78 0.074 -.0153611 .3271867

Five_star_movement |
res_south_insular | .9920254 .1643124 6.04 0.000 .669979 1.314072
_cons | -.5232481 .105165 -4.98 0.000 -.7293676 =0 JLTL265

Others

res_south_insular | -.1997519 .3688878 -0.54 0.588 —.9227588 .5232549
_cons | -2.027326 .1880564 -10.78 0.000 -2.395909 -1.658742




Multinomial logit model: interpretation

® STATA output includes as many sets of coefficients as the number of
included categories of y

® Coefficients of the baseline category of i are set at 0 and used as
reference for interpretation

o (Coefficients ,Bk are not easily interpretable: a one-unit increase in x;
changes v by py (ﬁk - ,B) relative to the baseline category; the signs of

Bk do not necessarily provide the directions of relationships

® To report results it is better either to use odds-ratio interpretation
(here called relative-risk-ratios), or to compute marginal effects

® Important: changing the baseline category of y affects all coefficients
and modifies their interpretation



. mlogit coalition res_south_insular,
with relative-risk-ratios;

baseoutcome (1) rrr
center-left as baseline

// multinomial logit model

Iteration 0: Log likelihood = -1313.532
Iteration 1: Log likelihood = -1282.4087
Iteration 2: Log likelihood = -1282.0117
Iteration 3: Log likelihood = -1282.0117
Multinomial logistic regression Number of obs = 1,078
LR chi2(3) = 63.04
Prob > chi2 = 0.0000
Log likelihood = -1282.0117 Pseudo R2 = 0.0240
coalition | RRR Std. err. z P>|z| [95% conf. interval]
Center_left | (base outcome)
Center_right
res_south_insular | .8304682 .1378209 -1.12 0.263 .5998757 1.1497
_cons | 1.168724 .1021304 1.78 0.074 .9847563 1.38706
Five_star_movement |
res_south_insular | 2.696691 .4430997 6.04 0.000 1.954196 8721295
_cons | .5925926 .06232 -4.98 0.000 .4822138 .7282372
Others
res_south_insular | .8189339 .3020947 -0.54 0.588 .3974211 1.687511
_cons | .1316872 .0247646 -10.78 0.000 .0910898 .1903784

Note: _cons estimates baseline relative risk for

each outcome.



. mlogit coalition res_south_insular,

baseoutcome (3)

rrr

// mul

tinomial logit model

with relative-risk-ratios; five star as baseline
Iteration 0: Log likelihood = -1313.532
Iteration 1: Log likelihood = -1282.4087
Iteration 2: Log likelihood = -1282.0117
Iteration 3: Log likelihood = -1282.0117
Multinomial logistic regression Number of obs = 1,078
LR chi2(3) = 63.04
Prob > chi2 = 0.0000
Log likelihood = -1282.0117 Pseudo R2 = 0.0240
coalition | RRR Std. err. z P>|z| [95% conf. interval
Center_left
res_south_insular | .3708249 .0609311 -6.04 0.000 .2687237 .5117193
_cons | 1.6875 .1774659 4.98 0.000 1.373179 2.073769
Center_right
res_south_insular | .3079582 .0503223 =721 0.000 .2235632 .4242124
_cons | 1.972222 .201761 6.64 0.000 1.6139 2.410099
Five_star_movement | (base outcome)
Others
res_south_insular | .3036811 .1116781 =8024 0.001 .1477033 .6243746
_cons | o BARRALZ .0434298 =770 0.000 .1515074 .3259426

Note:

_cons estimates baseline relative risk for

each outcome.



. margins, dydx (*)

Average marginal effects
Model VCE: OIM

dy/dx wrt: res_south_insular

1. _predict: Pr(coalition==Center_left),
2._predict: Pr(coalition==Center_right),
3._predict: Pr(coalition==Five_star_movement),
4. _predict: Pr(coalition==0Others),

// marginal effects

Number of obs

predict (pr outcome (1)

predict (pr outcome (2))
predict (pr outcome (3))
predict (pr outcome (4))

1,078

Delta-method

| dy/dx std. err. z P>|z]| [95% conf. interval]
res_south_insular |
_predict |

1 | -.0624444 .0294574 =2o42 0.034 -.1201798 -.004709

2 | -.1319259 .0300395 -4.39 0.000 -.1908022 -.0730495

3 .2097123 .0241428 8.69 0.000 .1623934 .2570312

4 | -.015342 .0131253 =1L,y 0.242 -.0410672 .0103832




Multinomial logit model: interpretation

® Being from Southern or Insular Italy increases the odds of voting for
the five star movement by a factor of 2.69 (corresponding to a 169%
increase) relative to voting for the center-left coalition

® Or, it decreases the odds of voting for the center-left coalition by a
factor of .308 (a 69% decrease) realtive to voting for the five star
movement

® Differences in voting across parties other than the five star movement
for a resident in Southern or Insular Italy are not statistically significant

® Averaged across all respondents, being from Southern or Insular Italy
increase the probability of voting for the five star movement by 21
percentage points, decreases that for the center-left coalition by 6.2 pp,
for the center-right by 13.2 pp, for other parties by 1.5 pp



Plot of predicted probabilities

margins i.res_south_insular
marginsplot, recastci (rarea) legend(title("Coalition voted")
left" 2 "Center-right" 3 "Five star mov." 4 "Other parties"))

order (1 "Center-—

Adjusted predictions of res_south_insular with 95% Cls

Coalition voted

[ Center-left

I Center-right

I Five star mov.
Other parties

Probability

-

Southern/Insular resident



Multinomial probit model

® The multinomial logit model imposes the assumption of Independence
of Irrelevant Alternatives (IIA): adding one option to choose from must
not alter the choice between initial options

® |f lIA is unlikely to hold, the multinomial probit model has to be
preferred

® The STATA implementation works exactly as the multinomial logit
model, except for differently scaled coefficients and for the absence of
odds-ratio interpretation (need to compute marginal effects)

® The STATA command is mprobit



Ordered choice models

® Suppose we want to understand the determinants of interest in politics,
by asking respondents whether they are ‘not at all’, ‘to some extent’ or
‘very interested’

® The outcome variable ¥ has categories whose order matters: answering
‘to some extent’ clearly indicates more interest than ‘not at all’ and less
than ‘very interested’ (ordered choices)

® The outcome variable presents k = 1, ..., m different categories, and it
holdsthat 1 <2 < ... <k

® |ndividual's i probability of reporting interest k is corresponds to
intervals of the cumulative distribution function:

— Logistic: ordered logit model (commmand ologit)

— Standard normal: ordered probit model (coommand oprobit)



Ordered choice models

o (Coefficients have a difficult interpretation also in these cases, but their
signs correctly indicate the direction of effects

® Need to predict probabilities, or predict marginal effects (or provide
odds-ratios in the ordered logit case adding the option , or)

® An assumption of ordered logit model is the presence of proportional
odds: the values attached to different ordered categories are arbitrary,
so it is assumed that moving from 0 to 1 is proportional to moving
from 1 to 2, etc.

® This assumtpion can be tested with the brant command



ologit polintr educ_years i.coalition, or // ordinal logit model with odds-—

ratios
Iteration 0: Log likelihood = -1334.5957
Iteration 1: Log likelihood = -1274.9161
Iteration 2: Log likelihood = -1274.3336
Iteration 3: Log likelihood = -1274.3329
Iteration 4: Log likelihood = -1274.3329
Ordered logistic regression Number of obs = 1,069
LR chi2 (4) = 120.53
Prob > chi2 = 0.0000
Log likelihood = -1274.3329 Pseudo R2 = 0.0452
polintr | Odds ratio Std. err. z P>|z| [95% conf. interval
educ_years | 1.142903 .0162026 9.42 0.000 1.111584 1.175105
|
coalition |
Center-right | .5754308 .0807796 -3.94 0.000 .4370191 . 7576799
Five star movement | .4689284 .0695468 =511 0.000 .3506426 .6271167
Others | .6105309 .1843187 =i,63 0.102 .3378552 1.103277
/cutl | -.3986842 .2072868 -.804959 .0075905
/cut2 | 1.535876 .2108008 1.122714 1.949038
/cut3 | 3.831804 .241305 3.358855 4.304753

Note: Estimates are transformed only in the first equation to odds ratios.
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