Discrete choice models in STATA

Francesco Mattioli

20612 – Political Science – Module I (Topics in Comparative Politics) M.Sc. Politics and Policy Analysis

November 6, 2023

Introduction

- Many political and economic outcomes of interest can be measured through quantitative variables
- As many common outcomes have a qualitative, or categorical, structure:
 - Choosing between voting or not
 - Choosing which party to vote
 - Reporting own interest in politics
- If we want to analyze quantitatively these outcomes, basic regression models are not appropriate

Outline

- Binary choice models
- 2 Linear Probability Model
- 3 Interactions
- 4 Logit model
- 6 Probit model
- 6 Model comparison
- Multinomial models
- Ordered choice models

Binary choice models

- We want to understand how individual characteristics, x (e.g. gender, age, income), predict electoral participation, y
- We use microdata from Round 10 of the European Social Survey, which asks 'Did you vote in the last national election?'
- Two possible, mutually exclusive answers: 'No' (0) or Yes (1)
- Voting is a binary random variable $Y \sim Bernoulli(p)$

$$y_i = \begin{cases} 1 & \text{with prob. p} \\ 0 & \text{with prob. } 1 - p \end{cases}$$

Modelling binary outcomes

- How to evaluate the impact of x on y?
- We could regress y on x to estimate the coefficients β
- Individual's i probability of voting is then a function of his/her characteristics, to be modeled through any proper functional form $F\left(\cdot\right)$:

$$p_i \equiv Pr(y_i = 1|\mathbf{x}) = F(\mathbf{x}_i'\boldsymbol{\beta})$$

• Three popular forms for $F(\cdot)$ are available:

Model	Functional form	Probability p	Marginal effect of x_j
LPM	Linear function: $f\left(\cdot\right)$	$f(x'\beta) = x'\beta$	eta_j
Logit	$Logistic\;cdf\!:\;\Lambda\left(\cdot\right)$	$\Lambda\left(oldsymbol{x'}oldsymbol{eta} ight)=rac{e^{oldsymbol{x'}oldsymbol{eta}}}{1+e^{oldsymbol{x'}oldsymbol{eta}}}$	$\Lambda\left(\boldsymbol{x'\beta}\right)\left\{1-\Lambda\left(\boldsymbol{x'\beta}\right)\right\}\beta_{j}$
Probit	Std. normal cdf: $\Phi\left(\cdot\right)$	$\Phi\left(\mathbf{x'\beta}\right) = \int_{-\infty}^{\mathbf{x'\beta}} \phi\left(z\right) dz$	$\phi\left(x^{\prime}\boldsymbol{\beta}\right)\beta_{j}$

An example in STATA (code fully commented on BBoard)

```
1 // access the European Social Survey data portal at https://ess
      -search.nsd.no
2 // download the dataset "ESS10 - integrated file, edition 3.1"
      in STATA format (.dta) after registering to the website
3 // store it into a proper location on your laptop
  clear all
5 cd "/Users/francescomattioli/Library/CloudStorage/OneDrive-
      UniversitaCommercialeLuigiBocconi/PhD/TA/20612 - Political
      Science/stata"
6 use "ESS10/ESS10.dta"
7 // We want to study the socio-demographic determinants of voter
       participation among Italians
8 // We are interested in variable "vote"
  codebook vote // Is vote a suitable binary variable?
recode vote (2 = 0) (3/.z = .), generate (turnout)
  label variable turnout "Turnout (binary)"
  label define turnout_labels 0 "No" 1 "Yes"
13 label values turnout turnout labels
```

◆□→ ◆罰→ ◆意→ ◆意→

```
3
4 clonevar age = agea if agea < .
                                                    // age
  clonevar gender = gndr
                                                    // gender (no
      need to clean it)
6 clonevar educ_years = eduyrs if eduyrs <= 30  // years of</pre>
       education (few very high values - outliers?)
7 clonevar income_d = hinctnta if hinctnta < . // deciles of</pre>
      household net income
9 // Let's focus on Italy
10 keep if cntry=="IT"
11
12 // Finding variables of interest:
13 // - read the codebook provided with the dataset
14 // - explore variables using STATA's data screening commands
15 // - type keywords in the variable list (on the right of STATA!
      s interface) and explore the variables retained
                                      ◆ロ → ◆部 → ◆ 差 → ◆ 差 → り へ ○ 7/53
```

1 // Let's choose some covariates of interest, e.g. age, gender,

2 // Clean them in the same way, but more quickly

education, and income

. **summarize** i.turnout age i.gender educ_years i.income_d, vsquish

Variable	Obs	Mean	Std. dev.	Min	Max
turnout					
No	2,366	.239645	.426957	0	1
Yes	2,366	.760355	.426957	0	1
age	2,597	51.58568	18.68979	15	90
gender					
Male	2,640	.475	.4994692	0	1
Female	2,640	.525	.4994692	0	1
educ_years	2,547	12.43659	4.239423	0	28
income_d	1 (07	0547010	.2274674	0	1
J - 1st d	1,627	.0547019	.3353826	0	1
R - 2nd d	1,627	.1290719		ŭ	1
C - 3rd d	1,627	.1567302	.363658	0	1
M - 4th d	1,627 	.1352182	.3420616	0 	1
F - 5th d	1,627	.1155501	.3197829	0	1
S - 6th d	1,627	.1180086	.3227175	0	1
K - 7th d	1,627	.122311	.3277454	0	1
P - 8th d	1,627	.0823602	.2749972	0	1
D - 9th d	1,627	.0590043	.2357052	0	1
H - 10th	1,627	.0270436	.1622605	0	1

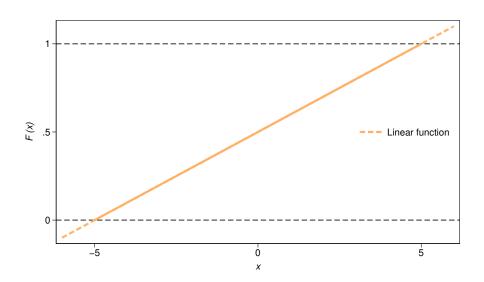
Linear Probability Model (LPM)

• Probability of voting is modelled as a linear function of x, and estimated by Ordinary Least Squares (OLS):

$$Pr(y_i = 1|\mathbf{x}) = \mathbf{x}_i' \boldsymbol{\beta}$$

- PROs:
 - OLS estimation is quick and straightforward
 - Intuitive and direct interpretation of marginal effects
 - In practice very similar to non-linear models (as $n \to \infty$)
- CONs:
 - Predicted probabilities outside the unit interval (p < 0 or p > 1)
 - Standard errors are heteroskedastic ($Var\left(arepsilon_{i}|oldsymbol{x}_{i}
 ight)=\sigma_{i}^{2}
 ight)$
 - A one-unit increase in x_j changes y by $\widehat{\beta}_j$ regardless of the starting value of x_j (constant marginal effects): effects are estimated more (less) precisely near (away from) the center of the distribution of x_j

LPM: problems



. regress turnout age i.gender educ_years i.income_d

Source Model Residual Total	14 22 	SS 1.8504404 3.547917 	1,448	.15	4383921	Number of F(12, 14: Prob > F R-square Adj R-sq Root MSE	48) d uared	= = = =	1,461 8.02 0.0000 0.0623 0.0545 .39292
turno	out	Coefficient	Std.	err.	t	P> t	[95%	conf.	. interval]
	age	.0022124	.0000	6678	3.31	0.001	.000	9024	.0035224
geno	der								
Femal	le	0269749	.020	7815	-1.30	0.194	067	7401	.0137902
educ_yea	i	.015086	.002	7841	5.42	0.000	.009	6246	.0205474
income R - 2nd decil		0060417	0.507	2200	0 50	0 610	076	1111	.1284978
C - 3rd decil		.0260417	.0522		0.50 2.84	0.618	.044		.1284978
M - 4th decil		.1588765	.050		3.03	0.003	.056		.244418
F - 5th decil		.0939942	.052		1.75	0.002	011		.1992421
S - 6th decil		.1288264	.0538		2.39	0.000	.023		.2343652
K - 7th decil		.2251418	.0532		4.23	0.000	.120		.3295171
P - 8th decil		.2104106	.0573		3.67	0.000	.09		.3229442
D - 9th decil		.1999662	.0610		3.28	0.001	.080		.31969
H - 10th decil		.1429715	.0782		1.83	0.068	010		.2964737
_cc	ons	.3679212	.0729	9288	5.04	0.000	.224	8638	.5109786

```
predict turnout pr, xb
                          // compute predicted probabilities and check their
     distribution
capture count if (turnout_pr < 0 | turnout_pr > 1) & turnout_pr != . // count how many
     observations have a predicted probability outside the unit interval
display "LPM predictions outside unit interval: `r(N)'"
LPM predictions outside unit interval: 26
summarize turnout_pr
   Variable | Obs Mean Std. dev. Min Max
 turnout_pr | 1,461 .7946612 .100854 .5230744 1.087262
estat hettest
Breusch-Pagan/Cook-Weisberg test for heteroskedasticity
Assumption: Normal error terms
Variable: Fitted values of turnout
```

H0: Constant variance
chi2(1) = 79.20
Prob > chi2 = 0.0000

LPM: marginal effects

- In LPM they correspond to the estimated $\widehat{oldsymbol{eta}}_{OLS}$ coefficients
- Interpretation: since the outcome is binary, $\widehat{m{\beta}}_{OLS}$ is interpreted as the change in the probability of y=1
- An example based on previous STATA output:
 - Categorical variables: individuals with income in the 5th decile have a non-significantly higher probability of voting than those in the 1st decile by ≈ 9 percentage points (pp) not by 9%!
 - Continuous variables: an additional year of age significantly increases the probability of voting by ≈ 0.2 pp (regardless of the starting age)

Interactions and factor-variable notation

- The effect of x_j on y might differ depending on the level of x_k : this requires entering non-linear terms in the regression, i.e. interacting variables
- Interacting means multiplying two or more variables, thus generating additional coefficients that require careful interpretation
- STATA's factor-variable operators, combined with command margins, simplify this task

Operator	Description
i.varname c.varname varname#varname varname##varname	indicators for each category of <i>varname</i> varname treated as continuous interaction of two variables interacting variables and their interaction

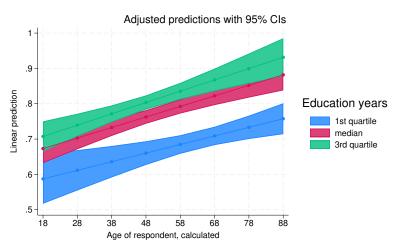
• Three forms of interaction are possible

Interaction 1: continuous \times continuous

. regress turnout c.age##c.educ_years, noheader										
turnout Coefficient Std. err. t P> t [95% conf. interval]										
age educ_years	.0015524	.0015347	1.01	0.312	0014572 .0011735	.004562				
c.age#c.educ_years	.0001101	.0001173	0.94	0.348	0001199	.00034				
_cons	.4220867	.0997573	4.23	0.000	.2264608	.6177126				

- $\widehat{eta}_{\rm age}$: one more year of age increases turnout by pprox .16 pp when educ_years is zero
- $\widehat{eta}_{
 m educ_years}$: one more year of education increases turnout by ≈ 1.5 pp when age is zero
- $\widehat{\beta}_{\text{age\#educ_years}}$: one more year of age increases turnout by $\approx .01$ pp for every additional year of educ_years (or viceversa)

Interaction 1: continuous \times continuous



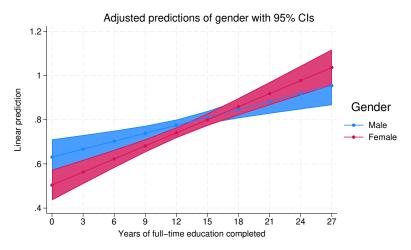
Interaction 2: continuous \times categorical

. regress turnout i.	gender##c.educ	_years, noh	eader			
turnout	Coefficient	Std. err.	t	P> t	[95% conf.	. interval]
gender	i					
Female	12677	.0537889	-2.36	0.019	2322503	0212897
educ_years	.0119892	.0030309	3.96	0.000	.0060457	.0179327
	I					
gender#c.educ_years	I					
Female	.0077347	.0040556	1.91	0.057	0002183	.0156877
	I					
_cons	.6309944	.0407287	15.49	0.000	.5511254	.7108635

- $\widehat{eta}_{\text{Female}}$: women have a smaller turnout than men by pprox .13 pp when educ_years is zero
- $\widehat{eta}_{ ext{educ_years}}$: one more year of education increases turnout by pprox 1.2 pp for men
- $\widehat{eta}_{ ext{gender\#educ_years}}$: women have a larger turnout than men by $\approx .8$ pp for every additional year of educ_years

Interaction 2: continuous × categorical

```
margins i.gender, at(educ_years=(0(3)28))
marginsplot, recastci(rarea) legend(title("Gender"))
```



Interaction 3: categorical \times categorical

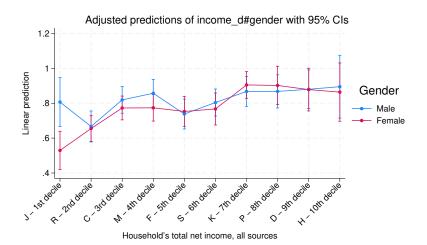
	turnout	1	Coefficient	Std. err.	t	P> t	[95% conf.	interval
	gender	-+-						
	Female	1	2770398	.0910069	-3.04	0.002	4555563	098523
		1						
	income_d	1						
R - 2nd	decile	1	1397849	.0848434	-1.65	0.100	3062114	.026641
C - 3rd	decile	1	.012596	.0816821	0.15	0.877	1476293	.172821
M - 4th	decile	1	.0506912	.0823444	0.62	0.538	1108332	.212215
F - 5th	decile	1	0683564	.0839772	-0.81	0.416	2330837	.09637
S - 6th	decile	1	00253	.0819555	-0.03	0.975	1632916	.158231
K - 7th	decile	1	.0610183	.0841135	0.73	0.468	1039764	.226012
P - 8th	decile	1	.0611954	.0865995	0.71	0.480	1086757	.231066
D - 9th	decile	1	.0735484	.0913503	0.81	0.421	1056417	.252738
H - 10th	decile	1	.0882852	.1164288	0.76	0.448	1400982	.316668
		1						
gender#	income_d	1						
Female#R - 2nd	decile	1	.2652404	.1083635	2.45	0.014	.0526777	.477803
Female#C - 3rd	decile	1	.2307195	.1049419	2.20	0.028	.0248684	.436570
Female#M - 4th	decile	1	.1934819	.1068558	1.81	0.070	0161234	.403087
Female#F - 5th	decile	1	.2918858	.1098268	2.66	0.008	.0764527	.507318
Female#S - 6th	decile	1	.2402416	.1097054	2.19	0.029	.0250466	.455436
Female#K - 7th	decile	i	.3143319	.1082912	2.90	0.004	.1019109	.526752
Female#P - 8th	decile	1	.3113536	.1173101	2.65	0.008	.0812414	.541465
Female#D - 9th	decile	1	.2750886	.1239788	2.22	0.027	.0318954	.518281
Female#H - 10th	decile	i	.2459394	.1547424	1.59	0.112	0575989	.549477
		i						
	_cons	i	.8064516	.0717715	11.24	0.000	.6656666	.947236

Interaction 3: categorical \times categorical

- $\widehat{eta}_{\texttt{Female}}$: women have a smaller turnout than men by pprox .28 pp when income_d is zero
- $\widehat{\beta}_{\text{10th_decile}}$: men in the 10^{th} income decile have a higher turnout by ≈ 9 pp than men in the 1^{st} decile (generalizes to other categories of income_d)
- $\widehat{\beta}_{\text{gender}\#10\text{th_decile}}$: women in the 10^{th} income decile have a larger turnout than men in the same decile by $\approx .25$ pp compared to the difference between women and men in the 1^{st} decile (hint: think about a Diff-in-Diff coefficient; generalizes to other categories of income_d))

Interaction 3: categorical \times categorical

```
margins i.income_d#i.gender
marginsplot, xlabel(, angle(45)) legend(title("Gender"))
```



Logit model and logistic regression

• To overcome the problems of LPM, the probability of voting can be modelled as a logistic function of x:

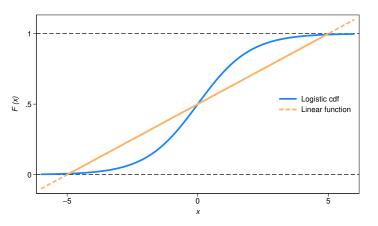
$$p = Pr(y = 1|x) = \Lambda(x'\beta) = \frac{e^{x'\beta}}{1 + e^{x'\beta}}$$

- The probability p of any binary outcome can alternatively be represented by means of the associated odds $\frac{p}{1-p}$
- The logistic unit model (hence logit) expresses the log-odds of the outcome as a linear function of x (easier to work with, being a log-linear model):

$$logit(p) = ln\left(\frac{p}{1-p}\right) = x'\beta$$

ullet The two notations are equivalent and interchangeably referred to as logit model, the only difference lies in the interpretation of eta

Logit: solution to LPM problems



• Constrains probabilities between their natural boundaries $(0 \le p \le 1)$:

$$\lim_{x \to -\infty} Pr\left(y_i = 1 | x\right) = 0 \qquad \lim_{x \to +\infty} Pr\left(y_i = 1 | x\right) = 1$$

• Marginal effects differ with the point of evaluation x_i

Logit: estimation

- Linear models are estimated by OLS: the estimated $\widehat{\beta}_{OLS}$ minimizes the residual sum of squares of the model (the coefficient that leads to the smallest error term)
- Non-linear models (also probit) are estimated by Maximum Likelihood (ML): the final $\widehat{\beta}_{MLE}$ maximizes the (log-)likelihood function (the coefficient that makes most likely the sample being analyzed)
- Computationally more demanding than OLS: starts with a guess $\widehat{\beta}_0$ and computes the likelihood, adjusts the initial guess and re-iterates the computation of the likelihood until it converges to the $\widehat{\beta}_{MLE}$ that makes the likelihood highest
- ML estimates are less reliable than OLS estimates in small samples
- Two ways to estimate a logit model in STATA

. logit turnout age i.gender educ_years i.income_d

Iteration 0: Log likelihood = -741.77176 Iteration 1: Log likelihood = -697.04399 Iteration 2: Log likelihood = -694.84045 Iteration 3: Log likelihood = -694.83169

Iteration 4: Log likelihood = -694.83169

Logistic regression

Number of obs = 1,461LR chi2(12) = 93.88Prob > chi2 = 0.0000Log likelihood = -694.83169Pseudo R2 = 0.0633

turnout	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
age	.0162673	.0044331	3.67	0.000	.0075786	.0249561
1						
gender						
Female	1801431	.1361288	-1.32	0.186	4469506	.0866644
educ_years	.1080394	.020023	5.40	0.000	.068795	.1472838
1						
income_d						
R - 2nd decile	.1105034	.2810715	0.39	0.694	4403866	.6613935
C - 3rd decile	.7045156	.2867744	2.46	0.014	.1424481	1.266583
M - 4th decile	.8012036	.3029256	2.64	0.008	.2074803	1.394927
F - 5th decile	.4087714	.2984958	1.37	0.171	1762696	.9938124
S - 6th decile	.594014	.3083027	1.93	0.054	0102481	1.198276
K - 7th decile	1.381398	.3417502	4.04	0.000	.7115801	2.051216
P - 8th decile	1.22115	.3734159	3.27	0.001	.4892687	1.953032
D - 9th decile	1.173607	.4058888	2.89	0.004	.3780799	1.969135
H - 10th decile	.7342881	.5498955	1.34	0.182	3434873	1.812064
_cons	-1.356762	.4661195	-2.91	0.004	-2.270339	4431842

Logit: marginal effects

- In non-linear models \widehat{eta}_{MLE} coefficients do not correspond to marginal effects
- The marginal effect of x_j is the slope of a probability **curve** evaluated at specific values of x and $\widehat{\beta}$ (non-constant marginal effects):
 - The sign of the effect is the same as that of \widehat{eta}_j
 - The *magnitude* of the effect is $\Lambda\left(x'\widehat{oldsymbol{eta}}\right)\left\{1-\Lambda\left(x'\widehat{oldsymbol{eta}}\right)\right\}\widehat{eta}_{j}$
- Evaluations point must be chosen when reporting results from non-linear models
- It is possible to compare directly the relative effects of pairs of regressors (e.g. being in the $10^{\rm th}$ income decile corresponds to $.734/.108 \approx 7$ more years spent in eduction)

. logit turnout age i.gender educ_years i.income_d, or

Iteration 0: Log likelihood = -741.77176
Iteration 1: Log likelihood = -697.04399
Iteration 2: Log likelihood = -694.84045
Iteration 3: Log likelihood = -694.83169
Iteration 4: Log likelihood = -694.83169

Logistic regression

Log likelihood = -694.83169

Number of obs = 1,461 LR chi2(12) = 93.88 Prob > chi2 = 0.0000 Pseudo R2 = 0.0633

turnout		Std. err.	Z	P> z	[95% conf.	interval]
age			3.67	0.000	1.007607	1.02527
gender						
Female	.8351507	.113688	-1.32	0.186	.6395755	1.090531
educ_years	1.114092	.0223075	5.40	0.000	1.071217	1.158683
income_d						
R - 2nd decile	1.11684	.313912	0.39	0.694	.6437875	1.93749
C - 3rd decile	2.022867	.5801063	2.46	0.014	1.153093	3.548706
M - 4th decile	2.228221	.6749853	2.64	0.008	1.230574	4.03468
F - 5th decile	1.504968	.4492265	1.37	0.171	.8383919	2.701514
S - 6th decile	1.811244	.5584114	1.93	0.054	.9898042	3.314399
K - 7th decile	3.980463	1.360324	4.04	0.000	2.037208	7.777355
P - 8th decile	3.391087	1.266286	3.27	0.001	1.631123	7.050032
D - 9th decile	3.233637	1.312497	2.89	0.004	1.45948	7.164475
H - 10th decile	2.083998	1.145981	1.34	0.182	.7092925	6.12307
_cons	.2574933	.1200226	-2.91	0.004	.1032772	.6419889

Note: _cons estimates baseline odds.

Logit: marginal effects

- Alternatively, $\widehat{\beta}_j$ is interpreted as the effect of a one-unit change in x_j on $logit(p) = ln\left(\frac{p}{1-p}\right)$
- The transformation $e^{\widehat{\beta}_j}$ (also called odds-ratio) gives the **multiplicative** effect of a one-unit change in x_j on the odds $\frac{p}{1-p}$
 - $e^{\widehat{\beta}_j}>1$ implies that the odds of voting are $e^{\widehat{\beta}_j}$ times larger; the odds of voting increase by $100\left(e^{\widehat{\beta}_j}-1\right)\%$
 - $e^{\widehat{eta}_j} < 1$ (but always > 0!) implies that the odds of voting decrease by a factor of $e^{\widehat{eta}_j}$; the odds of voting decrease by $100 \left(1-e^{\widehat{eta}_j}\right)$ %
- It is essential to know the starting values of the odds to quantify changes in probabilities correctly

Logit: marginal effects

- Because marginal effects depend on the point of evaluation, and if odds-ratios remain difficult to interpret, it is recommended to summarize marginal effects otherwise. Three common variants:
 - Average marginal effect: average of marginal effects for each individual
 - Marginal effects at the mean: marginal effects for the average individual (i.e. individual with average characteristics)
 - Marginal effects at representative value: marginal effects for a representative individual (i.e. individual with representative characteristics)
- To compute marginal effects of other kind of changes in x_j (not just one-unit changes) use prchange varlist
- It is possible to compute predicted probabilities as seen in the OLS case (margins i.varlist or margins, at(c.varlist = #))

. margins, dydx(*) // average marginal effects of each variable

Average marginal effects Model VCE: OIM

Number of obs = 1,461

Expression: Pr(turnout), predict()

dy/dx wrt: age 2.gender educ_years 2.income_d 3.income_d 4.income_d 5.income_d 6.income_d 7.
 income d 8.income d 9.income d 10.income d

		Delta-method				
!	dy/dx	std. err.	Z	P> z	[95% conf.	interval]
age	.0024823	.0006697	3.71	0.000	.0011697	.0037949
gender						
Female	0274486	.0206816	-1.33	0.184	0679838	.0130866
educ_years	.0164861	.0029881	5.52	0.000	.0106297	.0223426
1						
income_d						
R - 2nd decile	.0229247	.0587337	0.39	0.696	0921914	.1380407
C - 3rd decile	.1293056	.0558197	2.32	0.021	.0199011	.2387102
M - 4th decile	.1437221	.0571827	2.51	0.012	.0316459	.2557982
F - 5th decile	.080091	.0597827	1.34	0.180	0370809	.1972629
S - 6th decile	.1118177	.0597302	1.87	0.061	0052514	.2288869
K - 7th decile	.2135951	.0557563	3.83	0.000	.1043149	.3228754
P - 8th decile	.1970155	.0594668	3.31	0.001	.0804627	.3135684
D - 9th decile	.1917146	.0627796	3.05	0.002	.0686688	.3147604
H - 10th decile	.1338327	.0905325	1.48	0.139	0436079	.3112732

Note: dy/dx for factor levels is the discrete change from the base level.

. margins, dydx(*) atmeans noatlegend // marginal effects of each variable for the average individual

Conditional marginal effects Model VCE: OIM

Number of obs = 1,461

Expression: Pr(turnout), predict()

dy/dx wrt: age 2.gender educ_years 2.income_d 3.income_d 4.income_d 5.income_d 6.income_d 7.
 income_d 8.income_d 9.income_d 10.income_d

	dy/dx	Delta-method std. err.	Z	P> z	[95% conf.	intorvall
+						
age	.0024602	.0006616	3.72	0.000	.0011635	.0037569
1						
gender						
Female	0271832	.0204741	-1.33	0.184	0673118	.0129453
educ_years	.0163395	.0029453	5.55	0.000	.0105667	.0221122
1						
income_d						
R - 2nd decile	.0234455	.0601247	0.39	0.697	0943967	.1412877
C - 3rd decile	.1305049	.0568114	2.30	0.022	.0191565	.2418533
M - 4th decile	.1447572	.0580837	2.49	0.013	.0309152	.2585991
F - 5th decile	.081365	.0609014	1.34	0.182	0379997	.2007296
S - 6th decile	.1131272	.0606835	1.86	0.062	0058102	.2320646
K - 7th decile	.2128163	.0565676	3.76	0.000	.1019458	.3236868
P - 8th decile	.1968276	.0600304	3.28	0.001	.0791701	.3144851
D - 9th decile	.1916939	.0631545	3.04	0.002	.0679134	.3154743
H - 10th decile	.1349877	.0905552	1.49	0.136	0424973	.3124726

Note: dy/dx for factor levels is the discrete change from the base level.

Conditional marginal effects

Number of obs = 1,461

Expression: Pr(turnout), predict()

dy/dx wrt: age 2.gender educ_years 2.income_d 3.income_d 4.income_d 5.income_d 6.income_d 7.
 income_d 8.income_d 9.income_d 10.income_d

 		Delta-method std. err.	z	P> z	[95% conf.	interval
age	.0031793	.0010799	2.94	0.003	.0010627	.005295
gender						
Female	0366504	.0278018	-1.32	0.187	091141	.017840
educ_years	.0211153	.0052713	4.01	0.000	.0107837	.03144
income_d						
R - 2nd decile	.0271331	.0691807	0.39	0.695	1084586	.162724
C - 3rd decile	.1615442	.0672301	2.40	0.016	.0297756	.293312
M - 4th decile	.1808622	.0695863	2.60	0.009	.0444757	.317248
F - 5th decile	.0975985	.0717145	1.36	0.174	0429593	.23815
S - 6th decile	.1384688	.072346	1.91	0.056	0033268	.280264
K - 7th decile	.2783284	.0695151	4.00	0.000	.1420812	.41457
P - 8th decile	.2546212	.0750535	3.39	0.001	.1075191	.40172
) - 9th decile	.2471179	.0800974	3.09	0.002	.0901299	.4041
- 10th decile	.1675816	.1154887	1.45	0.147	0587721	.393935

Note: dy/dx for factor levels is the discrete change from the base level.

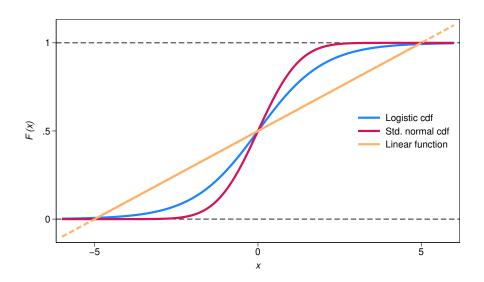
Probit

• Another popular method to model the probability of voting non-linearly is through a standard normal function of x:

$$p = Pr(y = 1|x) = \Phi(x'\beta) = \int_{-\infty}^{x'\beta} \frac{1}{\sqrt{2\pi}} e^{\frac{-z^2}{2}} dz$$

- This is called **prob**ability un**it** model (hence probit)
- Similar to logit model:
 - Both densities are symmetric around the mean (bell-shaped)
 - Both models are estimated by maximum likelihood
 - Both have non-constant marginal effects

Probit: a logit with thinner tails



Probit: marginal effects

• The marginal effect of x_j depends on the specific values of x and $\widehat{\beta}$:

$$\frac{1}{\sqrt{2\pi}}e^{\frac{-(x'\hat{\beta})^2}{2}}\widehat{\beta}_j$$

- A one-unit change in x_j has an effect of $\widehat{\beta}_j$ on the z-score of y (measurement units of a standard normal distribution)
- Unlike the logit model, the probit model does not allow a transformation of variables that makes coefficients easier to interpret
- When reporting probit results it is recommended to resort on margins
 directly to compute interpretable predicted probabilities or marginal
 effects (STATA syntax seen for logit applies also for probit)

```
. probit turnout age i.gender educ_years i.income_d // probit model estimation
Iteration 0: Log likelihood = -741.77176
Iteration 1: Log likelihood = -695.86802
Iteration 2: Log likelihood = -695.31477
Iteration 3: Log likelihood = -695.31474
Probit regression
                                               Number of obs = 1.461
                                               LR chi2(12) = 92.91
                                               Prob > chi2 = 0.0000
Log likelihood = -695.31474
                                               Pseudo R2 = 0.0626
      turnout | Coefficient Std. err. z P>|z| [95% conf. interval]
          age | .0089451 .0024794 3.61 0.000 .0040856 .0138046
       gender |
       Female | -.1030726 .0778016 -1.32 0.185 -.2555608 .0494157
    educ years | .0595093 .01103 5.40 0.000
                                                  .0378908
                                                             .0811278
      income_d |
R - 2nd decile | .0633083 .1730522
                                           0.714 -.2758679
                                                              .4024845
                                     0.37
C - 3rd decile | .4109274 .1729947
                                         0.018 .071864
                                     2.38
                                                             .7499908
M - 4th decile | .4650742 .1807062
                                     2.57 0.010 .1108966 .8192518
F - 5th decile | .2486845 .1814353
                                                  -.1069221 .6042912
                                    1.37
                                           0.170
S - 6th decile | .3590502
                                    1.94
                                           0.052
                                                  -.0035969 .7216973
                         .1850274
K - 7th decile | .7851377
                         .1946791
                                     4.03
                                           0.000 .4035736
                                                             1.166702
P - 8th decile | .7105861
                         .2123559
                                     3.35
                                           0.001 .2943763
                                                             1.126796
D - 9th decile | .6807951
                                    2.96 0.003 .2301533
                                                             1.131437
H - 10th decile | .4433589
                                    1.46 0.146
                                                   -.1537384
         cons | -.7026203 .2651352
                                    -2.65
                                           0.008
                                                   -1.222276
```

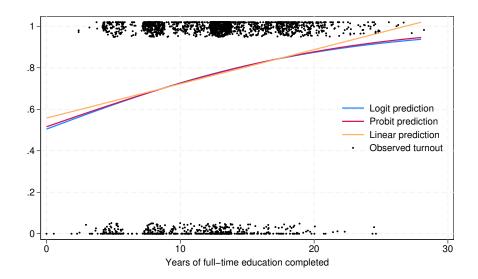
Comparing binary choice models

- The real choice is between linear and non-linear models
- Different coefficients across binary choice models do not imply different substantive effects, because they are approximately related:

$$eta_{Logit}pprox 4eta_{OLS}$$
 $eta_{Probit}pprox 2.5eta_{OLS}$ $eta_{Logit}pprox 1.6eta_{Probit}$

- Different marginal effects and probabilities from probit and logit arise when extreme values of $x'\beta$ are considered, or the distribution of y is highly skewed
- A set of statistics help identifying the 'best' model:
 - Higher log-likelihood at convergence
 - Higher Pseudo-R²
 - Higher percentage of correctty classified (estat classification after estimation)

Comparing predicted probabilities



Multinomial models

- Now we want to understand how individual characteristics predict voting decisions across different parties (nominal choices)
- The outcome variable presents k=1,...,m different categories, each corresponding to a different party
- The binary logic can be extended so as to encompass all choices faced by voting individuals; rather than one, we have m binary variables for each observation y_i

$$y_i = \begin{cases} 1 & \text{if } y = k \\ 0 & \text{if } y! = k \end{cases}$$

• Individual's i probability of voting for party k is:

$$p_{i,k} \equiv Pr(y_i = k|\mathbf{x}_i) = F_k(\mathbf{x}_i, \boldsymbol{\theta})$$

• All probabilities m must sum to one: $\sum_{k=1}^{m} F_k\left(x_i, oldsymbol{ heta}
ight) = 1$


```
fre prtvtdit
                                   // categorical variable recording the party voted in
      the last general elections (2018); parties are not sorted in any particular order;
     many of them were just voted by a few respondents
according to coalition (center-left, center-right, five star, others)
replace coalition = 1 if inlist(prtvtdit,2,7,11,14)  // center-left coalition
replace coalition = 2 if inlist(prtvtdit,3,4,5,8)  // center-right coalition
replace coalition = 3 if inlist(prtvtdit,1)
                                                  // five star movement
replace coalition = 4 if coalition == . & prtvtdit < .a // other minor parties
label variable coalition "Electoral coalition" // create labels for the new
     variable following the usual procedure
label define coalition labels 1 "Center-left" 2 "Center-right" 3 "Five star movement" 4 "
     Others"
label values coalition coalition labels
                                 // check that parties have been sorted correctly
tab prtvtdit coalition
// according to official statistics the five star movement got, as a single party, a
     plurality of votes in 2018; its vote shares were particularly high in Southern and
     Insular Italv
// let's analyze the probability that respondents from Southern and Insular Italy reported
     to have voted for different coalitions
fre region
                                    // categorical variable recording the Italian NUTS 1
      areas of residence
generate res south insular = (region == "ITF" | region == "ITG") if region != ""
     fast way to create a dummy variable
label variable res south insular "Southern/Insular resident"
```

Multinomial logit model

- $F_k(\cdot)$ can not be a linear function in a multinomial model
- The probability of voting for party *k* can be modelled using a variation of the logistic function seen before:

$$p_k = Pr(y = j|x) = \frac{e^{x'\beta_k}}{\sum_{j=1}^m e^{x'\beta_k}}$$

- The multinomial logit model is estimated by ML
- In binary models the choice of either category is naturally opposed to the other: estimation of either probability gives also the other probability
- In multinomial models we have m categories, each with its own probability: it is sufficient to estimate m-1 probabilities, but a baseline category must be chosen

```
. mlogit coalition res south insular, baseoutcome(1) // multinomial logit model;
    center-left as baseline
Iteration 0: Log likelihood = -1313.532
Iteration 1: Log likelihood = -1282.4087
Iteration 2: Log likelihood = -1282.0117
Iteration 3: Log likelihood = -1282.0117
Multinomial logistic regression
                                            Number of obs = 1,078
                                            LR chi2(3) = 63.04
                                            Prob > chi2 = 0.0000
Log likelihood = -1282.0117
                                            Pseudo R2 = 0.0240
       coalition | Coefficient Std. err. z P>|z| [95% conf. interval]
Center left | (base outcome)
Center right
cons | .1559128 .0873862 1.78 0.074 -.0153611
                                                             .3271867
Five star movement |
res south insular | .9920254 .1643124 6.04 0.000 .669979 1.314072
         cons | -.5232481 .105165 -4.98 0.000 -.7293676 -.3171285
Others
res south insular | -.1997519 .3688878 -0.54 0.588 -.9227588 .5232549
         cons | -2.027326 .1880564 -10.78 0.000 -2.395909 -1.658742
```

Multinomial logit model: interpretation

- STATA output includes as many sets of coefficients as the number of included categories of y
- ullet Coefficients of the baseline category of y are set at 0 and used as reference for interpretation
- Coefficients $\widehat{m{\beta}}_{\pmb{k}}$ are not easily interpretable: a one-unit increase in x_k changes y by $p_k\left(\widehat{m{\beta}}_k-\widehat{\overline{m{\beta}}}\right)$ relative to the baseline category; the signs of $\widehat{m{\beta}}_{\pmb{k}}$ do not necessarily provide the directions of relationships
- To report results it is better either to use odds-ratio interpretation (here called relative-risk-ratios), or to compute marginal effects
- Important: changing the baseline category of y affects all coefficients and modifies their interpretation

```
. mlogit coalition res south insular, baseoutcome(1) rrr // multinomial logit model
     with relative-risk-ratios; center-left as baseline
Iteration 0: Log likelihood = -1313.532
Iteration 1: Log likelihood = -1282.4087
Iteration 2: Log likelihood = -1282.0117
Iteration 3: Log likelihood = -1282.0117
Multinomial logistic regression
                                               Number of obs = 1,078
                                               LR chi2(3) = 63.04
                                               Prob > chi2 = 0.0000
Log likelihood = -1282.0117
                                               Pseudo R2 = 0.0240
      coalition | RRR Std. err. z P>|z| [95% conf. interval]
Center left | (base outcome)
Center_right |
 res south insular | .8304682 .1378209 -1.12 0.263 .5998757 1.1497
     cons | 1.168724 .1021304 1.78 0.074 .9847563 1.38706
Five star movement |
res south insular | 2.696691 .4430997 6.04 0.000 1.954196 3.721295
         cons | .5925926 .06232 -4.98 0.000 .4822138 .7282372
Others
 res south insular | .8189339 .3020947 -0.54 0.588 .3974211 1.687511
          cons | .1316872 .0247646 -10.78 0.000 .0910898 .1903784
Note: cons estimates baseline relative risk for each outcome.
```

```
. mlogit coalition res south insular, baseoutcome(3) rrr // multinomial logit model
     with relative-risk-ratios; five star as baseline
Iteration 0: Log likelihood = -1313.532
Iteration 1: Log likelihood = -1282.4087
Iteration 2: Log likelihood = -1282.0117
Iteration 3: Log likelihood = -1282.0117
Multinomial logistic regression
                                               Number of obs = 1,078
                                               LR chi2(3) = 63.04
                                               Prob > chi2 = 0.0000
Log likelihood = -1282.0117
                                               Pseudo R2 = 0.0240
      coalition | RRR Std. err. z P>|z| [95% conf. interval]
Center left |
 res south insular | .3708249 .0609311 -6.04 0.000 .2687237 .5117193
    cons | 1.6875 .1774659 4.98 0.000 1.373179
                                                                2.073769
Center right |
 res south insular | .3079582 .0503223 -7.21 0.000 .2235632 .4242124
         cons | 1.972222 .201761 6.64 0.000 1.6139 2.410099
Five star movement | (base outcome)
Others
res south insular | .3036811 .1116781 -3.24 0.001 .1477033 .6243746
          cons | .2222222 .0434298 -7.70 0.000 .1515074 .3259426
Note: cons estimates baseline relative risk for each outcome.
```

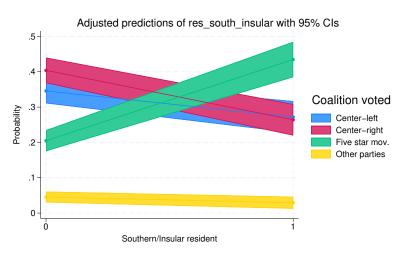
```
. margins, dydx(*)
                            // marginal effects
Average marginal effects
                                                    Number of obs = 1,078
Model VCE: OIM
dy/dx wrt: res south insular
1. predict: Pr(coalition == Center left), predict(pr outcome(1))
2. predict: Pr(coalition==Center right), predict(pr outcome(2))
3._predict: Pr(coalition==Five_star_movement), predict(pr outcome(3))
4._predict: Pr(coalition==Others), predict(pr outcome(4))
                            Delta-method
                       dy/dx std. err. z P>|z| [95% conf. interval]
res south insular
        _predict
                  -.0624444
                              .0294574
                                        -2.12 0.034 -.1201798
                                                                    -.004709
              2
                  -.1319259
                              .0300395
                                        -4.39
                                                0.000 -.1908022
                                                                    -.0730495
                    .2097123
                              .0241428
                                         8.69 0.000
                                                          .1623934
                                                                    .2570312
              3
                    -.015342
                              .0131253
                                         -1.17
                                                 0.242 -.0410672
                                                                      .0103832
```

Multinomial logit model: interpretation

- Being from Southern or Insular Italy increases the odds of voting for the five star movement by a factor of 2.69 (corresponding to a 169% increase) relative to voting for the center-left coalition
- Or, it decreases the odds of voting for the center-left coalition by a factor of .308 (a 69% decrease) realtive to voting for the five star movement
- Differences in voting across parties other than the five star movement for a resident in Southern or Insular Italy are not statistically significant
- Averaged across all respondents, being from Southern or Insular Italy increase the probability of voting for the five star movement by 21 percentage points, decreases that for the center-left coalition by 6.2 pp, for the center-right by 13.2 pp, for other parties by 1.5 pp

Plot of predicted probabilities

```
margins i.res_south_insular
marginsplot, recastci(rarea) legend(title("Coalition voted") order(1 "Center-
left" 2 "Center-right" 3 "Five star mov." 4 "Other parties"))
```



Multinomial probit model

- The multinomial logit model imposes the assumption of Independence of Irrelevant Alternatives (IIA): adding one option to choose from must not alter the choice between initial options
- If IIA is unlikely to hold, the multinomial probit model has to be preferred
- The STATA implementation works exactly as the multinomial logit model, except for differently scaled coefficients and for the absence of odds-ratio interpretation (need to compute marginal effects)
- The STATA command is mprobit

Ordered choice models

- Suppose we want to understand the determinants of interest in politics, by asking respondents whether they are 'not at all', 'to some extent' or 'very interested'
- ullet The outcome variable y has categories whose order matters: answering 'to some extent' clearly indicates more interest than 'not at all' and less than 'very interested' (ordered choices)
- The outcome variable presents k=1,...,m different categories, and it holds that 1<2<...< k
- Individual's *i* probability of reporting interest *k* is corresponds to intervals of the cumulative distribution function:
 - Logistic: ordered logit model (commmand ologit)
 - Standard normal: ordered probit model (coommand oprobit)

Ordered choice models

- Coefficients have a difficult interpretation also in these cases, but their signs correctly indicate the direction of effects
- Need to predict probabilities, or predict marginal effects (or provide odds-ratios in the ordered logit case adding the option, or)
- An assumption of ordered logit model is the presence of proportional odds: the values attached to different ordered categories are arbitrary, so it is assumed that moving from 0 to 1 is proportional to moving from 1 to 2, etc.
- This assumtpion can be tested with the brant command

```
. ologit polintr educ years i.coalition, or
                                             // ordinal logit model with odds-
     ratios
Iteration 0:
            Log likelihood = -1334.5957
Iteration 1:
            Log likelihood = -1274.9161
Iteration 2:
            Log likelihood = -1274.3336
Iteration 3:
            Log likelihood = -1274.3329
Iteration 4:
            Log likelihood = -1274.3329
Ordered logistic regression
                                                  Number of obs = 1.069
                                                  LR chi2(4) = 120.53
                                                  Prob > chi2 = 0.0000
Log likelihood = -1274.3329
                                                  Pseudo R2 = 0.0452
         polintr | Odds ratio Std. err. z P>|z| [95% conf. interval]
        educ vears | 1.142903
                               .0162026 9.42 0.000 1.111584 1.175105
        coalition |
    Center-right | .5754308
                               .0807796 -3.94 0.000 .4370191 .7576799
                   .4689284
                               .0695468 -5.11 0.000
Five star movement
                                                          .3506426
                                                                    .6271167
          Others
                     .6105309
                               .1843187 -1.63 0.102
                                                          .3378552
                                                                     1.103277
            /cut1 | -.3986842
                               .2072868
                                                          -.804959 .0075905
            /cut2 | 1.535876
                               .2108008
                                                          1.122714
                                                                    1.949038
            /cut3 | 3.831804
                               .241305
                                                          3.358855
                                                                     4.304753
```

Note: Estimates are transformed only in the first equation to odds ratios.

References

- Cameron, A. Colin, and Pravin K. Trivedi. 2005. *Microeconometrics: Methods and Applications*. Cambridge University Press.
- 2022a. Microeconometrics Using Stata, Volume I: Cross-Sectional and Panel Regression Methods. 2nd ed. Stata Press.
- ——. 2022b. Microeconometrics Using Stata, Volume II: Nonlinear Methods and Causal Inference Methods. 2nd ed. Stata Press.
- Greene, William H. 2018. Econometric Analysis. 8th ed. Pearson.
- Long, J. Scott. 1997. Regression models for categorical and limited dependent variables. Vol. 7. Sage Publications.
- Wooldridge, Jeffrey M. 2012. Econometric Analysis of Cross Section and Panel Data. 2nd ed. MIT Press.