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Introduction

• Many political and economic outcomes of interest can be measured
through quantitative variables

• As many common outcomes have a qualitative, or categorical,
structure:

– Choosing between voting or not

– Choosing which party to vote

– Reporting own interest in politics

• If we want to analyze quantitatively these outcomes, basic regression
models are not appropriate
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Binary choice models

• We want to understand how individual characteristics, x (e.g. gender,
age, income), predict electoral participation, y

• We use microdata from Round 10 of the European Social Survey,
which asks ‘Did you vote in the last national election?’

• Two possible, mutually exclusive answers: ‘No’ (0) or Yes (1)

• Voting is a binary random variable Y → Bernoulli (p)

yi =

{
1 with prob. p

0 with prob. 1 ↑ p
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Modelling binary outcomes

• How to evaluate the impact of x on y?

• We could regress y on x to estimate the coe!cients ω

• Individual’s i probability of voting is then a function of his/her
characteristics, to be modeled through any proper functional form F (·):

pi ↓ Pr (yi = 1|x) = F (x→iω)

• Three popular forms for F (·) are available:

Model Functional form Probability p Marginal e!ect of xj

LPM Linear function: f (·) f (x→ω) = x
→ω βj

Logit Logistic cdf: Λ (·) Λ (x→ω) = e
x
→ω

1+ex→ω Λ (x→ω) {1 ↑ Λ (x→ω)}βj

Probit Std. normal cdf: Φ (·) Φ (x→ω) =
∫

x
→ω

↑∞
φ (z) dz φ (x→ω) βj
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An example in STATA (code fully commented on BBoard)

1 // access the European Social Survey data portal at https://ess
-search.nsd.no

2 // download the dataset "ESS10 - integrated file, edition 3.1"
in STATA format (.dta) after registering to the website

3 // store it into a proper location on your laptop
4 clear all
5 cd "/Users/francescomattioli/Library/CloudStorage/OneDrive-

UniversitaCommercialeLuigiBocconi/PhD/TA/20612 - Political
Science/stata"

6 use "ESS10/ESS10.dta"
7 // We want to study the socio-demographic determinants of voter

participation among Italians
8 // We are interested in variable "vote"
9 codebook vote // Is vote a suitable binary variable?

10 recode vote (2 = 0) (3/.z = .), generate(turnout)
11 label variable turnout "Turnout (binary)"
12 label define turnout_labels 0 "No" 1 "Yes"
13 label values turnout turnout_labels
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1 // Let's choose some covariates of interest, e.g. age, gender,
education, and income

2 // Clean them in the same way, but more quickly
3

4 clonevar age = agea if agea < . // age
5 clonevar gender = gndr // gender (no

need to clean it)
6 clonevar educ_years = eduyrs if eduyrs <= 30 // years of

education (few very high values - outliers?)
7 clonevar income_d = hinctnta if hinctnta < . // deciles of

household net income
8

9 // Let's focus on Italy
10 keep if cntry=="IT"
11

12 // Finding variables of interest:
13 // - read the codebook provided with the dataset
14 // - explore variables using STATA's data screening commands
15 // - type keywords in the variable list (on the right of STATA'

s interface) and explore the variables retained
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. summarize i.turnout age i.gender educ_years i.income_d, vsquish

Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------

turnout |
No | 2,366 .239645 .426957 0 1
Yes | 2,366 .760355 .426957 0 1
age | 2,597 51.58568 18.68979 15 90

gender |
Male | 2,640 .475 .4994692 0 1

Female | 2,640 .525 .4994692 0 1
-------------+---------------------------------------------------------
educ_years | 2,547 12.43659 4.239423 0 28

income_d |
J - 1st d.. | 1,627 .0547019 .2274674 0 1
R - 2nd d.. | 1,627 .1290719 .3353826 0 1
C - 3rd d.. | 1,627 .1567302 .363658 0 1
M - 4th d.. | 1,627 .1352182 .3420616 0 1
-------------+---------------------------------------------------------
F - 5th d.. | 1,627 .1155501 .3197829 0 1
S - 6th d.. | 1,627 .1180086 .3227175 0 1
K - 7th d.. | 1,627 .122311 .3277454 0 1
P - 8th d.. | 1,627 .0823602 .2749972 0 1
D - 9th d.. | 1,627 .0590043 .2357052 0 1
-------------+---------------------------------------------------------
H - 10th .. | 1,627 .0270436 .1622605 0 1
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Linear Probability Model (LPM)

• Probability of voting is modelled as a linear function of x, and
estimated by Ordinary Least Squares (OLS):

Pr (yi = 1|x) = x
→
i
ω

• PROs:

– OLS estimation is quick and straightforward

– Intuitive and direct interpretation of marginal e”ects

– In practice very similar to non-linear models (as n ↔ ∞)

• CONs:

– Predicted probabilities outside the unit interval (p < 0 or p > 1)

– Standard errors are heteroskedastic (Var (εi|xi) = ϱ2
i
)

– A one-unit increase in xj changes y by β̂j regardless of the starting
value of xj (constant marginal e”ects): e”ects are estimated more
(less) precisely near (away from) the center of the distribution of xj
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LPM: problems
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. regress turnout age i.gender educ_years i.income_d

Source | SS df MS Number of obs = 1,461
-------------+---------------------------------- F(12, 1448) = 8.02

Model | 14.8504404 12 1.2375367 Prob > F = 0.0000
Residual | 223.547917 1,448 .154383921 R-squared = 0.0623

-------------+---------------------------------- Adj R-squared = 0.0545
Total | 238.398357 1,460 .163286546 Root MSE = .39292

----------------------------------------------------------------------------------
turnout | Coefficient Std. err. t P>|t| [95% conf. interval]

-----------------+----------------------------------------------------------------
age | .0022124 .0006678 3.31 0.001 .0009024 .0035224

|
gender |

Female | -.0269749 .0207815 -1.30 0.194 -.0677401 .0137902
educ_years | .015086 .0027841 5.42 0.000 .0096246 .0205474

|
income_d |

R - 2nd decile | .0260417 .0522308 0.50 0.618 -.0764144 .1284978
C - 3rd decile | .1445538 .0509095 2.84 0.005 .0446895 .244418
M - 4th decile | .1588765 .0523927 3.03 0.002 .0561029 .2616501
F - 5th decile | .0939942 .053654 1.75 0.080 -.0112538 .1992421
S - 6th decile | .1288264 .0538023 2.39 0.017 .0232876 .2343652
K - 7th decile | .2251418 .0532091 4.23 0.000 .1207666 .3295171
P - 8th decile | .2104106 .0573682 3.67 0.000 .097877 .3229442
D - 9th decile | .1999662 .0610336 3.28 0.001 .0802425 .31969

H - 10th decile | .1429715 .0782535 1.83 0.068 -.0105308 .2964737
|

_cons | .3679212 .0729288 5.04 0.000 .2248638 .5109786
----------------------------------------------------------------------------------
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predict turnout_pr, xb // compute predicted probabilities and check their

distribution

capture count if (turnout_pr < 0 | turnout_pr > 1) & turnout_pr != . // count how many

observations have a predicted probability outside the unit interval

display "LPM predictions outside unit interval: `r(N)'"

LPM predictions outside unit interval: 26

summarize turnout_pr

Variable | Obs Mean Std. dev. Min Max

-------------+---------------------------------------------------------

turnout_pr | 1,461 .7946612 .100854 .5230744 1.087262

estat hettest

Breusch-Pagan/Cook-Weisberg test for heteroskedasticity

Assumption: Normal error terms

Variable: Fitted values of turnout

H0: Constant variance

chi2(1) = 79.20

Prob > chi2 = 0.0000
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LPM: marginal e!ects

• In LPM they correspond to the estimated ω̂OLS coe!cients

• Interpretation: since the outcome is binary, ω̂OLS is interpreted as the
change in the probability of y = 1

• An example based on previous STATA output:

– Categorical variables: individuals with income in the 5th decile have
a non-significantly higher probability of voting than those in the 1st

decile by ↗ 9 percentage points (pp) – not by 9%!

– Continuous variables: an additional year of age significantly
increases the probability of voting by ↗ 0.2 pp (regardless of the
starting age)

margins i.varname // predicted values of y for each catergory of
varname (categorical)

margins, at(varname = #) // predicted values of y at specified levels of
varname (continuous)

margins, dydx(varlist) // marginal effect of variables in varlist
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Interactions and factor-variable notation

• The e”ect of xj on y might di”er depending on the level of xk: this
requires entering non-linear terms in the regression, i.e. interacting
variables

• Interacting means multiplying two or more variables, thus generating
additional coe!cients that require careful interpretation

• STATA’s factor-variable operators, combined with command
margins, simplify this task

Operator Description

i.varname indicators for each category of varname
c.varname varname treated as continuous
varname#varname interaction of two variables
varname##varname interacting variables and their interaction

• Three forms of interaction are possible
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Interaction 1: continuous ↘ continuous

. regress turnout c.age##c.educ_years, noheader
------------------------------------------------------------------------------------

turnout | Coefficient Std. err. t P>|t| [95% conf. interval]
-------------------+----------------------------------------------------------------

age | .0015524 .0015347 1.01 0.312 -.0014572 .004562
educ_years | .0151716 .0071382 2.13 0.034 .0011735 .0291697

|
c.age#c.educ_years | .0001101 .0001173 0.94 0.348 -.0001199 .00034

|
_cons | .4220867 .0997573 4.23 0.000 .2264608 .6177126

------------------------------------------------------------------------------------

• β̂age: one more year of age increases turnout by ↗ .16 pp when
educ years is zero

• β̂educ years: one more year of education increases turnout by ↗ 1.5
pp when age is zero

• β̂age#educ years: one more year of age increases turnout by ↗ .01 pp
for every additional year of educ years (or viceversa)

15/53



Interaction 1: continuous ↘ continuous

margins, at(age=(18(10)90) educ_years=(8 13 15))

marginsplot, recastci(rarea) legend(title("Education years") order(1 "1st
quartile" 2 "median" 3 "3rd quartile"))
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Interaction 2: continuous ↘ categorical

. regress turnout i.gender##c.educ_years, noheader
-------------------------------------------------------------------------------------

turnout | Coefficient Std. err. t P>|t| [95% conf. interval]
--------------------+----------------------------------------------------------------

gender |
Female | -.12677 .0537889 -2.36 0.019 -.2322503 -.0212897

educ_years | .0119892 .0030309 3.96 0.000 .0060457 .0179327
|

gender#c.educ_years |
Female | .0077347 .0040556 1.91 0.057 -.0002183 .0156877

|
_cons | .6309944 .0407287 15.49 0.000 .5511254 .7108635

-------------------------------------------------------------------------------------

• β̂Female: women have a smaller turnout than men by ↗ .13 pp when
educ years is zero

• β̂educ years: one more year of education increases turnout by ↗ 1.2
pp for men

• β̂gender#educ years: women have a larger turnout than men by ↗ .8
pp for every additional year of educ years
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Interaction 2: continuous ↘ categorical

margins i.gender, at(educ_years=(0(3)28))

marginsplot, recastci(rarea) legend(title("Gender"))
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Interaction 3: categorical ↘ categorical

. regress turnout i.gender##i.income_d, noheader
-----------------------------------------------------------------------------------------

turnout | Coefficient Std. err. t P>|t| [95% conf. interval]
------------------------+----------------------------------------------------------------

gender |
Female | -.2770398 .0910069 -3.04 0.002 -.4555563 -.0985234

|
income_d |

R - 2nd decile | -.1397849 .0848434 -1.65 0.100 -.3062114 .0266415
C - 3rd decile | .012596 .0816821 0.15 0.877 -.1476293 .1728214
M - 4th decile | .0506912 .0823444 0.62 0.538 -.1108332 .2122157
F - 5th decile | -.0683564 .0839772 -0.81 0.416 -.2330837 .096371
S - 6th decile | -.00253 .0819555 -0.03 0.975 -.1632916 .1582315
K - 7th decile | .0610183 .0841135 0.73 0.468 -.1039764 .2260129
P - 8th decile | .0611954 .0865995 0.71 0.480 -.1086757 .2310666
D - 9th decile | .0735484 .0913503 0.81 0.421 -.1056417 .2527385

H - 10th decile | .0882852 .1164288 0.76 0.448 -.1400982 .3166687
|

gender#income_d |
Female#R - 2nd decile | .2652404 .1083635 2.45 0.014 .0526777 .4778032
Female#C - 3rd decile | .2307195 .1049419 2.20 0.028 .0248684 .4365706
Female#M - 4th decile | .1934819 .1068558 1.81 0.070 -.0161234 .4030872
Female#F - 5th decile | .2918858 .1098268 2.66 0.008 .0764527 .5073189
Female#S - 6th decile | .2402416 .1097054 2.19 0.029 .0250466 .4554365
Female#K - 7th decile | .3143319 .1082912 2.90 0.004 .1019109 .5267529
Female#P - 8th decile | .3113536 .1173101 2.65 0.008 .0812414 .5414658
Female#D - 9th decile | .2750886 .1239788 2.22 0.027 .0318954 .5182819

Female#H - 10th decile | .2459394 .1547424 1.59 0.112 -.0575989 .5494776
|

_cons | .8064516 .0717715 11.24 0.000 .6656666 .9472366
-----------------------------------------------------------------------------------------

19/53



Interaction 3: categorical ↘ categorical

• β̂Female: women have a smaller turnout than men by ↗ .28 pp when
income d is zero

• β̂10th decile: men in the 10th income decile have a higher turnout
by ↗ 9 pp than men in the 1st decile (generalizes to other categories of
income d)

• β̂gender#10th decile: women in the 10th income decile have a larger
turnout than men in the same decile by ↗ .25 pp compared to the
di”erence between women and men in the 1st decile (hint: think about
a Di”-in-Di” coe!cient; generalizes to other categories of income d))
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Interaction 3: categorical ↘ categorical

margins i.income_d#i.gender

marginsplot, xlabel(, angle(45)) legend(title("Gender"))
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Logit model and logistic regression

• To overcome the problems of LPM, the probability of voting can be
modelled as a logistic function of x:

p = Pr (y = 1|x) = Λ (x→ω) =
e

x
→ω

1 + ex→ω

• The probability p of any binary outcome can alternatively be
represented by means of the associated odds p

1↑p

• The logistic unit model (hence logit) expresses the log-odds of the
outcome as a linear function of x (easier to work with, being a
log-linear model):

logit (p) = ln

(
p

1 ↑ p

)
= x

→ω

• The two notations are equivalent and interchangeably referred to as
logit model, the only di”erence lies in the interpretation of ω
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Logit: solution to LPM problems
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• Constrains probabilities between their natural boundaries (0 ≃ p ≃ 1):

lim
x↔↑∞

Pr (yi = 1|x) = 0 lim
x↔+∞

Pr (yi = 1|x) = 1

• Marginal e”ects di”er with the point of evaluation xi

23/53



Logit: estimation

• Linear models are estimated by OLS: the estimated ω̂OLS minimizes the
residual sum of squares of the model (the coe!cient that leads to the
smallest error term)

• Non-linear models (also probit) are estimated by Maximum Likelihood
(ML): the final ω̂MLE maximizes the (log-)likelihood function (the
coe!cient that makes most likely the sample being analyzed)

• Computationally more demanding than OLS: starts with a guess ω̂0
and computes the likelihood, adjusts the initial guess and re-iterates
the computation of the likelihood until it converges to the ω̂MLE that
makes the likelihood highest

• ML estimates are less reliable than OLS estimates in small samples

• Two ways to estimate a logit model in STATA
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. logit turnout age i.gender educ_years i.income_d

Iteration 0: Log likelihood = -741.77176
Iteration 1: Log likelihood = -697.04399
Iteration 2: Log likelihood = -694.84045
Iteration 3: Log likelihood = -694.83169
Iteration 4: Log likelihood = -694.83169

Logistic regression Number of obs = 1,461
LR chi2(12) = 93.88
Prob > chi2 = 0.0000

Log likelihood = -694.83169 Pseudo R2 = 0.0633

----------------------------------------------------------------------------------
turnout | Coefficient Std. err. z P>|z| [95% conf. interval]

-----------------+----------------------------------------------------------------
age | .0162673 .0044331 3.67 0.000 .0075786 .0249561

|
gender |

Female | -.1801431 .1361288 -1.32 0.186 -.4469506 .0866644
educ_years | .1080394 .020023 5.40 0.000 .068795 .1472838

|
income_d |

R - 2nd decile | .1105034 .2810715 0.39 0.694 -.4403866 .6613935
C - 3rd decile | .7045156 .2867744 2.46 0.014 .1424481 1.266583
M - 4th decile | .8012036 .3029256 2.64 0.008 .2074803 1.394927
F - 5th decile | .4087714 .2984958 1.37 0.171 -.1762696 .9938124
S - 6th decile | .594014 .3083027 1.93 0.054 -.0102481 1.198276
K - 7th decile | 1.381398 .3417502 4.04 0.000 .7115801 2.051216
P - 8th decile | 1.22115 .3734159 3.27 0.001 .4892687 1.953032
D - 9th decile | 1.173607 .4058888 2.89 0.004 .3780799 1.969135

H - 10th decile | .7342881 .5498955 1.34 0.182 -.3434873 1.812064
|

_cons | -1.356762 .4661195 -2.91 0.004 -2.270339 -.4431842
----------------------------------------------------------------------------------
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Logit: marginal e!ects

• In non-linear models ω̂MLE coe!cients do not correspond to marginal
e”ects

• The marginal e”ect of xj is the slope of a probability curve evaluated

at specific values of x and β̂ (non-constant marginal e”ects):

– The sign of the e”ect is the same as that of β̂j

– The magnitude of the e”ect is Λ
(

x
→ω̂

){
1 ↑ Λ

(
x
→ω̂

)}
β̂j

• Evaluations point must be chosen when reporting results from
non-linear models

• It is possible to compare directly the relative e”ects of pairs of
regressors (e.g. being in the 10th income decile corresponds to
.734/.108 ↗ 7 more years spent in eduction)
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. logit turnout age i.gender educ_years i.income_d, or

Iteration 0: Log likelihood = -741.77176
Iteration 1: Log likelihood = -697.04399
Iteration 2: Log likelihood = -694.84045
Iteration 3: Log likelihood = -694.83169
Iteration 4: Log likelihood = -694.83169

Logistic regression Number of obs = 1,461
LR chi2(12) = 93.88
Prob > chi2 = 0.0000

Log likelihood = -694.83169 Pseudo R2 = 0.0633

----------------------------------------------------------------------------------
turnout | Odds ratio Std. err. z P>|z| [95% conf. interval]

-----------------+----------------------------------------------------------------
age | 1.0164 .0045058 3.67 0.000 1.007607 1.02527

|
gender |

Female | .8351507 .113688 -1.32 0.186 .6395755 1.090531
educ_years | 1.114092 .0223075 5.40 0.000 1.071217 1.158683

|
income_d |

R - 2nd decile | 1.11684 .313912 0.39 0.694 .6437875 1.93749
C - 3rd decile | 2.022867 .5801063 2.46 0.014 1.153093 3.548706
M - 4th decile | 2.228221 .6749853 2.64 0.008 1.230574 4.03468
F - 5th decile | 1.504968 .4492265 1.37 0.171 .8383919 2.701514
S - 6th decile | 1.811244 .5584114 1.93 0.054 .9898042 3.314399
K - 7th decile | 3.980463 1.360324 4.04 0.000 2.037208 7.777355
P - 8th decile | 3.391087 1.266286 3.27 0.001 1.631123 7.050032
D - 9th decile | 3.233637 1.312497 2.89 0.004 1.45948 7.164475

H - 10th decile | 2.083998 1.145981 1.34 0.182 .7092925 6.12307
|

_cons | .2574933 .1200226 -2.91 0.004 .1032772 .6419889
----------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
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Logit: marginal e!ects

• Alternatively, β̂j is interpreted as the e”ect of a one-unit change in xj

on logit (p) = ln

(
p

1↑p

)

• The transformation e
β̂j (also called odds-ratio) gives the multiplicative

e”ect of a one-unit change in xj on the odds p

1↑p

– e
β̂j > 1 implies that the odds of voting are e

β̂j times larger; the odds

of voting increase by 100
(

e
β̂j ↑ 1

)
%

– e
β̂j < 1 (but always > 0!) implies that the odds of voting decrease

by a factor of e
β̂j ; the odds of voting decrease by 100

(
1 ↑ e

β̂j

)
%

• It is essential to know the starting values of the odds to quantify
changes in probabilities correctly
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Logit: marginal e!ects

• Because marginal e”ects depend on the point of evaluation, and if
odds-ratios remain di!cult to interpret, it is recommended to
summarize marginal e”ects otherwise. Three common variants:

– Average marginal e!ect: average of marginal e”ects for each
individual

– Marginal e!ects at the mean: marginal e”ects for the average
individual (i.e. individual with average characteristics)

– Marginal e!ects at representative value: marginal e”ects for a
representative individual (i.e. individual with representative
characteristics)

• To compute marginal e”ects of other kind of changes in xj (not just
one-unit changes) use prchange varlist

• It is possible to compute predicted probabilities as seen in the OLS case
(margins i.varlist or margins, at(c.varlist = #))
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. margins, dydx(*) // average marginal effects of each variable

Average marginal effects Number of obs = 1,461
Model VCE: OIM

Expression: Pr(turnout), predict()
dy/dx wrt: age 2.gender educ_years 2.income_d 3.income_d 4.income_d 5.income_d 6.income_d 7.

income_d 8.income_d 9.income_d 10.income_d

----------------------------------------------------------------------------------
| Delta-method
| dy/dx std. err. z P>|z| [95% conf. interval]

-----------------+----------------------------------------------------------------
age | .0024823 .0006697 3.71 0.000 .0011697 .0037949

|
gender |

Female | -.0274486 .0206816 -1.33 0.184 -.0679838 .0130866
educ_years | .0164861 .0029881 5.52 0.000 .0106297 .0223426

|
income_d |

R - 2nd decile | .0229247 .0587337 0.39 0.696 -.0921914 .1380407
C - 3rd decile | .1293056 .0558197 2.32 0.021 .0199011 .2387102
M - 4th decile | .1437221 .0571827 2.51 0.012 .0316459 .2557982
F - 5th decile | .080091 .0597827 1.34 0.180 -.0370809 .1972629
S - 6th decile | .1118177 .0597302 1.87 0.061 -.0052514 .2288869
K - 7th decile | .2135951 .0557563 3.83 0.000 .1043149 .3228754
P - 8th decile | .1970155 .0594668 3.31 0.001 .0804627 .3135684
D - 9th decile | .1917146 .0627796 3.05 0.002 .0686688 .3147604

H - 10th decile | .1338327 .0905325 1.48 0.139 -.0436079 .3112732
----------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
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. margins, dydx(*) atmeans noatlegend // marginal effects of each variable for the average
individual

Conditional marginal effects Number of obs = 1,461
Model VCE: OIM

Expression: Pr(turnout), predict()
dy/dx wrt: age 2.gender educ_years 2.income_d 3.income_d 4.income_d 5.income_d 6.income_d 7.

income_d 8.income_d 9.income_d 10.income_d

----------------------------------------------------------------------------------
| Delta-method
| dy/dx std. err. z P>|z| [95% conf. interval]

-----------------+----------------------------------------------------------------
age | .0024602 .0006616 3.72 0.000 .0011635 .0037569

|
gender |

Female | -.0271832 .0204741 -1.33 0.184 -.0673118 .0129453
educ_years | .0163395 .0029453 5.55 0.000 .0105667 .0221122

|
income_d |

R - 2nd decile | .0234455 .0601247 0.39 0.697 -.0943967 .1412877
C - 3rd decile | .1305049 .0568114 2.30 0.022 .0191565 .2418533
M - 4th decile | .1447572 .0580837 2.49 0.013 .0309152 .2585991
F - 5th decile | .081365 .0609014 1.34 0.182 -.0379997 .2007296
S - 6th decile | .1131272 .0606835 1.86 0.062 -.0058102 .2320646
K - 7th decile | .2128163 .0565676 3.76 0.000 .1019458 .3236868
P - 8th decile | .1968276 .0600304 3.28 0.001 .0791701 .3144851
D - 9th decile | .1916939 .0631545 3.04 0.002 .0679134 .3154743

H - 10th decile | .1349877 .0905552 1.49 0.136 -.0424973 .3124726
----------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
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. margins, dydx(*) at(age = 30 gender = 1 educ_years = 10 income_d = 4) noatlegend // marginal
effects of each variable for a representative individual (e.g. 30-year-old woman with 10
years of education and income in 4th decile)

Conditional marginal effects Number of obs = 1,461
Model VCE: OIM

Expression: Pr(turnout), predict()
dy/dx wrt: age 2.gender educ_years 2.income_d 3.income_d 4.income_d 5.income_d 6.income_d 7.

income_d 8.income_d 9.income_d 10.income_d

----------------------------------------------------------------------------------
| Delta-method
| dy/dx std. err. z P>|z| [95% conf. interval]

-----------------+----------------------------------------------------------------
age | .0031793 .0010799 2.94 0.003 .0010627 .0052959

|
gender |

Female | -.0366504 .0278018 -1.32 0.187 -.091141 .0178401
educ_years | .0211153 .0052713 4.01 0.000 .0107837 .031447

|
income_d |

R - 2nd decile | .0271331 .0691807 0.39 0.695 -.1084586 .1627249
C - 3rd decile | .1615442 .0672301 2.40 0.016 .0297756 .2933128
M - 4th decile | .1808622 .0695863 2.60 0.009 .0444757 .3172488
F - 5th decile | .0975985 .0717145 1.36 0.174 -.0429593 .2381563
S - 6th decile | .1384688 .072346 1.91 0.056 -.0033268 .2802644
K - 7th decile | .2783284 .0695151 4.00 0.000 .1420812 .4145756
P - 8th decile | .2546212 .0750535 3.39 0.001 .1075191 .4017233
D - 9th decile | .2471179 .0800974 3.09 0.002 .0901299 .404106

H - 10th decile | .1675816 .1154887 1.45 0.147 -.0587721 .3939353
----------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
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Probit

• Another popular method to model the probability of voting non-linearly
is through a standard normal function of x:

p = Pr (y = 1|x) = Φ (x→ω) =
∫

x
→ω

↑∞

1⇐
2π

e
↑z

2
2 dz

• This is called probability unit model (hence probit)

• Similar to logit model:

– Both densities are symmetric around the mean (bell-shaped)

– Both models are estimated by maximum likelihood

– Both have non-constant marginal e”ects

33/53



Probit: a logit with thinner tails
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Probit: marginal e!ects

• The marginal e”ect of xj depends on the specific values of x and ω̂:

1⇐
2π

e

↑(x
→ω̂)2

2 β̂j

• A one-unit change in xj has an e”ect of β̂j on the z-score of y

(measurement units of a standard normal distribution)

• Unlike the logit model, the probit model does not allow a
transformation of variables that makes coe!cients easier to interpret

• When reporting probit results it is recommended to resort on margins
directly to compute interpretable predicted probabilities or marginal
e”ects (STATA syntax seen for logit applies also for probit)
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. probit turnout age i.gender educ_years i.income_d // probit model estimation

Iteration 0: Log likelihood = -741.77176
Iteration 1: Log likelihood = -695.86802
Iteration 2: Log likelihood = -695.31477
Iteration 3: Log likelihood = -695.31474

Probit regression Number of obs = 1,461
LR chi2(12) = 92.91
Prob > chi2 = 0.0000

Log likelihood = -695.31474 Pseudo R2 = 0.0626

----------------------------------------------------------------------------------
turnout | Coefficient Std. err. z P>|z| [95% conf. interval]

-----------------+----------------------------------------------------------------
age | .0089451 .0024794 3.61 0.000 .0040856 .0138046

|
gender |

Female | -.1030726 .0778016 -1.32 0.185 -.2555608 .0494157
educ_years | .0595093 .01103 5.40 0.000 .0378908 .0811278

|
income_d |

R - 2nd decile | .0633083 .1730522 0.37 0.714 -.2758679 .4024845
C - 3rd decile | .4109274 .1729947 2.38 0.018 .071864 .7499908
M - 4th decile | .4650742 .1807062 2.57 0.010 .1108966 .8192518
F - 5th decile | .2486845 .1814353 1.37 0.170 -.1069221 .6042912
S - 6th decile | .3590502 .1850274 1.94 0.052 -.0035969 .7216973
K - 7th decile | .7851377 .1946791 4.03 0.000 .4035736 1.166702
P - 8th decile | .7105861 .2123559 3.35 0.001 .2943763 1.126796
D - 9th decile | .6807951 .2299235 2.96 0.003 .2301533 1.131437

H - 10th decile | .4433589 .3046471 1.46 0.146 -.1537384 1.040456
|

_cons | -.7026203 .2651352 -2.65 0.008 -1.222276 -.1829649
----------------------------------------------------------------------------------
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Comparing binary choice models

• The real choice is between linear and non-linear models

• Di”erent coe!cients across binary choice models do not imply di”erent
substantive e”ects, because they are approximately related:

ωLogit ↗ 4ωOLS

ωProbit ↗ 2.5ωOLS

ωLogit ↗ 1.6ωProbit

• Di”erent marginal e”ects and probabilities from probit and logit arise
when extreme values of x

→ω are considered, or the distribution of y is
highly skewed

• A set of statistics help identifying the ‘best’ model:

– Higher log-likelihood at convergence

– Higher Pseudo-R2

– Higher percentage of correclty classified (estat
classification after estimation)
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Comparing predicted probabilities
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Multinomial models

• Now we want to understand how individual characteristics predict
voting decisions across di”erent parties (nominal choices)

• The outcome variable presents k = 1, ..., m di”erent categories, each
corresponding to a di”erent party

• The binary logic can be extended so as to encompass all choices faced
by voting individuals; rather than one, we have m binary variables for
each observation yi

yi =

{
1 if y = k

0 if y! = k

• Individual’s i probability of voting for party k is:

pi,k ↓ Pr (yi = k|xi) = Fk (xi,ε)

• All probabilities m must sum to one: ∑m

k=1 Fk (xi,ε) = 1
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fre prtvtdit // categorical variable recording the party voted in
the last general elections (2018); parties are not sorted in any particular order;
many of them were just voted by a few respondents

generate coalition = . // create a new variable that aggregates parties
according to coalition (center-left, center-right, five star, others)

replace coalition = 1 if inlist(prtvtdit,2,7,11,14) // center-left coalition
replace coalition = 2 if inlist(prtvtdit,3,4,5,8) // center-right coalition
replace coalition = 3 if inlist(prtvtdit,1) // five star movement
replace coalition = 4 if coalition== . & prtvtdit < .a // other minor parties

label variable coalition "Electoral coalition" // create labels for the new
variable following the usual procedure

label define coalition_labels 1 "Center-left" 2 "Center-right" 3 "Five star movement" 4 "
Others"

label values coalition coalition_labels

tab prtvtdit coalition // check that parties have been sorted correctly

// according to official statistics the five star movement got, as a single party, a
plurality of votes in 2018; its vote shares were particularly high in Southern and
Insular Italy

// let's analyze the probability that respondents from Southern and Insular Italy reported
to have voted for different coalitions

fre region // categorical variable recording the Italian NUTS 1
areas of residence

generate res_south_insular = (region == "ITF" | region == "ITG") if region != "" //
fast way to create a dummy variable

label variable res_south_insular "Southern/Insular resident"
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Multinomial logit model

• Fk (·) can not be a linear function in a multinomial model

• The probability of voting for party k can be modelled using a variation
of the logistic function seen before:

pk = Pr (y = j|x) = e
x
→ωk

∑m

j=1 ex→ωk

• The multinomial logit model is estimated by ML

• In binary models the choice of either category is naturally opposed to
the other: estimation of either probability gives also the other
probability

• In multinomial models we have m categories, each with its own
probability: it is su!cient to estimate m ↑ 1 probabilities, but a
baseline category must be chosen
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. mlogit coalition res_south_insular, baseoutcome(1) // multinomial logit model;
center-left as baseline

Iteration 0: Log likelihood = -1313.532
Iteration 1: Log likelihood = -1282.4087
Iteration 2: Log likelihood = -1282.0117
Iteration 3: Log likelihood = -1282.0117

Multinomial logistic regression Number of obs = 1,078
LR chi2(3) = 63.04
Prob > chi2 = 0.0000

Log likelihood = -1282.0117 Pseudo R2 = 0.0240

------------------------------------------------------------------------------------
coalition | Coefficient Std. err. z P>|z| [95% conf. interval]

-------------------+----------------------------------------------------------------
Center_left | (base outcome)
-------------------+----------------------------------------------------------------
Center_right |
res_south_insular | -.1857657 .1659557 -1.12 0.263 -.5110328 .1395014

_cons | .1559128 .0873862 1.78 0.074 -.0153611 .3271867
-------------------+----------------------------------------------------------------
Five_star_movement |
res_south_insular | .9920254 .1643124 6.04 0.000 .669979 1.314072

_cons | -.5232481 .105165 -4.98 0.000 -.7293676 -.3171285
-------------------+----------------------------------------------------------------
Others |
res_south_insular | -.1997519 .3688878 -0.54 0.588 -.9227588 .5232549

_cons | -2.027326 .1880564 -10.78 0.000 -2.395909 -1.658742
------------------------------------------------------------------------------------
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Multinomial logit model: interpretation

• STATA output includes as many sets of coe!cients as the number of
included categories of y

• Coe!cients of the baseline category of y are set at 0 and used as
reference for interpretation

• Coe!cients ω̂k are not easily interpretable: a one-unit increase in xk

changes y by pk

(
β̂k ↑ β̂

)
relative to the baseline category; the signs of

ω̂k do not necessarily provide the directions of relationships

• To report results it is better either to use odds-ratio interpretation
(here called relative-risk-ratios), or to compute marginal e”ects

• Important: changing the baseline category of y a”ects all coe!cients
and modifies their interpretation
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. mlogit coalition res_south_insular, baseoutcome(1) rrr // multinomial logit model
with relative-risk-ratios; center-left as baseline

Iteration 0: Log likelihood = -1313.532
Iteration 1: Log likelihood = -1282.4087
Iteration 2: Log likelihood = -1282.0117
Iteration 3: Log likelihood = -1282.0117

Multinomial logistic regression Number of obs = 1,078
LR chi2(3) = 63.04
Prob > chi2 = 0.0000

Log likelihood = -1282.0117 Pseudo R2 = 0.0240

------------------------------------------------------------------------------------
coalition | RRR Std. err. z P>|z| [95% conf. interval]

-------------------+----------------------------------------------------------------
Center_left | (base outcome)
-------------------+----------------------------------------------------------------
Center_right |
res_south_insular | .8304682 .1378209 -1.12 0.263 .5998757 1.1497

_cons | 1.168724 .1021304 1.78 0.074 .9847563 1.38706
-------------------+----------------------------------------------------------------
Five_star_movement |
res_south_insular | 2.696691 .4430997 6.04 0.000 1.954196 3.721295

_cons | .5925926 .06232 -4.98 0.000 .4822138 .7282372
-------------------+----------------------------------------------------------------
Others |
res_south_insular | .8189339 .3020947 -0.54 0.588 .3974211 1.687511

_cons | .1316872 .0247646 -10.78 0.000 .0910898 .1903784
------------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
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. mlogit coalition res_south_insular, baseoutcome(3) rrr // multinomial logit model
with relative-risk-ratios; five star as baseline

Iteration 0: Log likelihood = -1313.532
Iteration 1: Log likelihood = -1282.4087
Iteration 2: Log likelihood = -1282.0117
Iteration 3: Log likelihood = -1282.0117

Multinomial logistic regression Number of obs = 1,078
LR chi2(3) = 63.04
Prob > chi2 = 0.0000

Log likelihood = -1282.0117 Pseudo R2 = 0.0240

------------------------------------------------------------------------------------
coalition | RRR Std. err. z P>|z| [95% conf. interval]

-------------------+----------------------------------------------------------------
Center_left |
res_south_insular | .3708249 .0609311 -6.04 0.000 .2687237 .5117193

_cons | 1.6875 .1774659 4.98 0.000 1.373179 2.073769
-------------------+----------------------------------------------------------------
Center_right |
res_south_insular | .3079582 .0503223 -7.21 0.000 .2235632 .4242124

_cons | 1.972222 .201761 6.64 0.000 1.6139 2.410099
-------------------+----------------------------------------------------------------
Five_star_movement | (base outcome)
-------------------+----------------------------------------------------------------
Others |
res_south_insular | .3036811 .1116781 -3.24 0.001 .1477033 .6243746

_cons | .2222222 .0434298 -7.70 0.000 .1515074 .3259426
------------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
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. margins, dydx(*) // marginal effects

Average marginal effects Number of obs = 1,078
Model VCE: OIM

dy/dx wrt: res_south_insular

1._predict: Pr(coalition==Center_left), predict(pr outcome(1))
2._predict: Pr(coalition==Center_right), predict(pr outcome(2))
3._predict: Pr(coalition==Five_star_movement), predict(pr outcome(3))
4._predict: Pr(coalition==Others), predict(pr outcome(4))

-----------------------------------------------------------------------------------
| Delta-method
| dy/dx std. err. z P>|z| [95% conf. interval]

------------------+----------------------------------------------------------------
res_south_insular |

_predict |
1 | -.0624444 .0294574 -2.12 0.034 -.1201798 -.004709
2 | -.1319259 .0300395 -4.39 0.000 -.1908022 -.0730495
3 | .2097123 .0241428 8.69 0.000 .1623934 .2570312
4 | -.015342 .0131253 -1.17 0.242 -.0410672 .0103832

-----------------------------------------------------------------------------------
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Multinomial logit model: interpretation

• Being from Southern or Insular Italy increases the odds of voting for
the five star movement by a factor of 2.69 (corresponding to a 169%
increase) relative to voting for the center-left coalition

• Or, it decreases the odds of voting for the center-left coalition by a
factor of .308 (a 69% decrease) realtive to voting for the five star
movement

• Di”erences in voting across parties other than the five star movement
for a resident in Southern or Insular Italy are not statistically significant

• Averaged across all respondents, being from Southern or Insular Italy
increase the probability of voting for the five star movement by 21
percentage points, decreases that for the center-left coalition by 6.2 pp,
for the center-right by 13.2 pp, for other parties by 1.5 pp
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Plot of predicted probabilities

margins i.res_south_insular
marginsplot, recastci(rarea) legend(title("Coalition voted") order(1 "Center-

left" 2 "Center-right" 3 "Five star mov." 4 "Other parties"))
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Multinomial probit model

• The multinomial logit model imposes the assumption of Independence
of Irrelevant Alternatives (IIA): adding one option to choose from must
not alter the choice between initial options

• If IIA is unlikely to hold, the multinomial probit model has to be
preferred

• The STATA implementation works exactly as the multinomial logit
model, except for di”erently scaled coe!cients and for the absence of
odds-ratio interpretation (need to compute marginal e”ects)

• The STATA command is mprobit
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Ordered choice models

• Suppose we want to understand the determinants of interest in politics,
by asking respondents whether they are ‘not at all’, ‘to some extent’ or
‘very interested’

• The outcome variable y has categories whose order matters: answering
‘to some extent’ clearly indicates more interest than ‘not at all’ and less
than ‘very interested’ (ordered choices)

• The outcome variable presents k = 1, ..., m di”erent categories, and it
holds that 1 < 2 < ... < k

• Individual’s i probability of reporting interest k is corresponds to
intervals of the cumulative distribution function:

– Logistic: ordered logit model (commmand ologit)

– Standard normal: ordered probit model (coommand oprobit)

50/53



Ordered choice models

• Coe!cients have a di!cult interpretation also in these cases, but their
signs correctly indicate the direction of e”ects

• Need to predict probabilities, or predict marginal e”ects (or provide
odds-ratios in the ordered logit case adding the option , or)

• An assumption of ordered logit model is the presence of proportional
odds: the values attached to di”erent ordered categories are arbitrary,
so it is assumed that moving from 0 to 1 is proportional to moving
from 1 to 2, etc.

• This assumtpion can be tested with the brant command
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. ologit polintr educ_years i.coalition, or // ordinal logit model with odds-
ratios

Iteration 0: Log likelihood = -1334.5957
Iteration 1: Log likelihood = -1274.9161
Iteration 2: Log likelihood = -1274.3336
Iteration 3: Log likelihood = -1274.3329
Iteration 4: Log likelihood = -1274.3329

Ordered logistic regression Number of obs = 1,069
LR chi2(4) = 120.53
Prob > chi2 = 0.0000

Log likelihood = -1274.3329 Pseudo R2 = 0.0452

-------------------------------------------------------------------------------------
polintr | Odds ratio Std. err. z P>|z| [95% conf. interval]

--------------------+----------------------------------------------------------------
educ_years | 1.142903 .0162026 9.42 0.000 1.111584 1.175105

|
coalition |

Center-right | .5754308 .0807796 -3.94 0.000 .4370191 .7576799
Five star movement | .4689284 .0695468 -5.11 0.000 .3506426 .6271167

Others | .6105309 .1843187 -1.63 0.102 .3378552 1.103277
--------------------+----------------------------------------------------------------

/cut1 | -.3986842 .2072868 -.804959 .0075905
/cut2 | 1.535876 .2108008 1.122714 1.949038
/cut3 | 3.831804 .241305 3.358855 4.304753

-------------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation to odds ratios.
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