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Why do we need to talk about probability?

• Most aspects of the world around us have an element of randomness

• Probability theory: Quantifying Randomness

• Some Definitions:

– Outcome (y): (mutually exclusive) result of a Random Process

– Probability (p): proportion of times that a certain outcome is
observed if you repeat a random process many times

– Random Variable (Y): variable (discrete or continuous) that can
take on a set of different values, each with an associated probability
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Probability Distributions – Discrete Random Variables

Probability Distribution or Probability Mass Function: list of all
possible values yi, with i = 1, ..., N, of the random variable Y and the
probability that each value occurs (frequency): f (Y) = Pr(Y = yi)

Example. European Social Survey, Wave 10 (free to download upon
registration)
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https://ess.sikt.no/en/datafile/f37d014a-6958-42d4-b03b-17c29e481d3d/262?tab=0


Probability Distributions – Graphical Representation
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Probability Distributions – Discrete Random Variables

Cumulative Distribution Function (cdf): probability that the
random variable is less than or equal to a given value:

F(Y) = Pr(Y ≤ yk) =
k

∑
i=1

f (yi)

6/37



Histograms – Continuous Random Variables

Probability Density Function (pdf): area under pdf between two
values is the probability that the random variable falls between those
two values: f (Y)
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Moments of a distribution

Measures of Central Tendency

• Expected Value, E(Y), or Mean, µY (population mean) or Y (sample
mean) – First moment

• Median: the value ym that splits the distribution in two equal parts
(50% of the distribution on its left, 50% on its right)

• Mode: the value with the highest frequency
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Example: Mean computation

Y = p1y1 + p2y2 + ... + pNyN =
N

∑
i=1

piyi
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Comparing distributions with different means
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Moments of a distribution

Measures of Dispersion (second moment)

• (Population) Variance

Var(Y) = σ2
Y =

N

∑
i=1

pi(yi − Y)2

= p1(y1 − Y)2 + p2(y2 − Y)2 + ... + pN(yN − Y)2

• Standard Deviation

σY =
√

Var(Y)
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Example: Variance computation
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Comparing distributions with different variance
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Quantiles

qϕ = min{y : F(y) ≥ ϕ}

Very important quantiles:

• Median: q0.5

• Tertiles: q0.33, q0.66

• Quartiles: q0.25, q0.5, q0.75

• Quintiles: q0.2, q0.4, q0.6, q0.8

• Deciles: q0.1, q0.2, ..., q0.9

• Percentiles: q0.01, q0.02, ..., q0.99
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Example: Quantiles in the income distribution

EU Survey on Income and Living Conditions (EU-SILC)
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https://ec.europa.eu/eurostat/web/microdata/european-union-statistics-on-income-and-living-conditions


Example: Quantiles in the income distribution

EU Survey on Income and Living Conditions (EU-SILC)
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https://ec.europa.eu/eurostat/web/microdata/european-union-statistics-on-income-and-living-conditions


Concepts involving two random variables

Joint Probability Distribution: the joint probability distribution of
two random variables X and Y is the probability that the Y and X
simultaneously take on certain values yi and xj:
f (yi, xj) = Pr(Y = yi, X = xj)

Example: joint distribution of Y (Trust in political parties – recoded)
and X (Voted in last election)
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Concepts involving two random variables

Conditional Distribution: the conditional distribution of one variable
Y given another variable X is the distribution of Y conditional on X
taking on a specific value xk: f (Y|X) = Pr(Y = yi|X = xk)

Example: conditional distribution of Y (Trust in political parties –
recoded) given certain values of X (Voted in last election)

18/37



Concepts involving two random variables

Conditional Distribution: the conditional distribution of one variable
Y given another variable X is the distribution of Y conditional on X
taking on a specific value xk: f (Y|X) = Pr(Y = yi|X = xk)

Example: conditional distribution of Y (Trust in political parties –
recoded) given certain values of X (Voted in last election)

18/37



Concepts involving two random variables

Conditional Mean: the mean of Y conditional on X taking on a
specific value xk:
Y = f (y1|X = xk) · y1 + ...+ f (yN|X = xk) · yN = ∑N

i=1 f (yi|X = xk) · yi

Example: conditional mean of Y (Trust in political parties – recoded)
given certain values of X (Voted in last election)
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Concepts involving two random variables

Independence: two random variables X and Y are independently
distributed if knowing the value of X provides no information about Y:
f (Y|X) = Pr(Y = yi|X = xk) = Pr(Y = yi)

Example: consider again Y and X; are they independent? No. (i) joint
prob. ̸= product of marginal prob. (ii) conditional prob. ̸= marginal
prob.
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Concepts involving two random variables

Covariance: measure of the extent to which two random variables
move together:

Cov(Y, X) = σYX =
N

∑
i=1

K

∑
j=1

(yi − Y) · (xj − X) · f (Y = yi, X = xj)

Example: covariance between Y and X

21/37



Concepts involving two random variables

Example: covariance between Y and X

Cov(Y, X) = σYX =
N

∑
i=1

K

∑
j=1

(yi − Y) · (xi − X) · f (Y = yi, X = xi)

Cov(Y, Y) = σ2
Y =

N

∑
i=1

(yi − Y) · f (Y = yi)

Cov(X, X) = σ2
X =

K

∑
j=1

(xj − X) · f (X = xj)
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Concepts involving two random variables

Correlation: (standardized) measure of the extent to which two
random variables move together:

Corr(Y, X) =
σYX

σY · σX
=

Cov(Y, X)√
Var(Y) · Var(X)

• −1 ≤ Corr(Y, X) ≤ 1

• Corr(Y, X) = 0 → X and Y are uncorrelated

Example: correlation between Y and X
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Why do we need Statistics?

We cannot run a survey of a full population whenever we want to
answer questions about unknown characteristics of its distribution.

Statistical Inference: we can learn about a characteristics of a
population by selecting a random sample of that population

Econometrics uses three main statistical methods:

• Estimation: computing a Best Guess numerical value for an unknown
characteristic (parameter) of a population distribution, from a sample
of data

• Hypothesis testing: formulating a hypothesis about the population
and use sample evidence to decide if it is true

• Confidence Intervals: use the sample data to calculate a range of
statistically plausible values around the best guess for the unknown
population characteristic
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Estimators and their Properties

• We want to know the mean value of y in a population (µy is the
parameter to be estimated)

• Draw a random sample of n independently and identically distributed
(iid) observations y1, y2, ..., yn

• Compute the sample average y = y1+...+yn
n

• y is an estimator of µy (a function of the sample)

• y is a random variable, because it is influenced by the random draw of
the sample (the individual you draw as first or ith observation yi is
random!)

• The estimate (the actual value that y takes) is not random variable,
but a scalar (a number)

• If you repeat the random draw from the same population a second
time, the same estimator (random variable) y will produce a different
estimate (scalar)

• As all random variables y has a probability distribution called sampling
distribution 24/37



Example. Sampling distribution of y

y f (y)
1.5 1/3
2.2 1/3
1.8 1/3

E(y) = 1.5 · 1/3 + 2.2 · 1/3 + 1.8 · 1/3 = 1.833
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Example. Sampling distribution of y
Estimator (random variable) y has its sampling distribution
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Estimators and their Properties

What makes an estimator ‘good’? A good estimator gets as close as
possible to the unknown true value of the population parameter.
Desirable properties of a good estimator:

• Unbiasedness: an estimator is biased if it’s different, on average, from
the true value of the parameter that is being estimated; draws from the
same population should be random to satisfy the property

Example. the average of the sampling distribution of y, E(y), should
be equal to the true value of the population mean, µy; if not,
bias = E(y)− µy ̸= 0

• Consistency: an estimator is consistent if it gets closer, as the sample
size grows, to the true value of the parameter that is being estimated;
uncertainty about µy decreases as n increases
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Statistical inference

Problem: we have only one sample! We have to infer as much
information as possible from the one sample we have

Solution: we use the variation in the one sample available to
approximate the sampling distribution of our estimator y

Intuition: the larger the sample we draw, the better we can
approximate mean and variance of the sampling distribution

We have two tools:

• Law of Large Numbers: when sample size n → ∞ then y → µy and
s2

y → σ2
y (y: sample mean; s2

y: sample variance)

• Central Limit Theorem (CLT) + Law of Large Numbers: when
sample size n → ∞, then the sampling distribution of y can be

approximated by a normal: y ∼ N
(

µy,
σ2

y
n

)
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Hypothesis Testing

Statistics let us test hypotheses about the world around us formulated
as yes/no questions.

Example. Is the mean level of trust in political parties, µy, in
European countries equal to 2 (on a 0 - 10 scale)?

Questions like this create two mutually exclusive statements, only one
of which can be true:

– Null hypothesis: baseline statement we believe to be true

H0 : µy = 2

– Alternative hypothesis: statement that holds true if the null is not

H1 : µy ̸= 2

Problem for policy analysts: decide whether to accept H0 or to reject
H0 (in favor of H1) using our one (random) sample and computing y
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T-statistic

The t-statistic is a standardized form of the sample average

Example. Is the mean level of trust in political parties, µy, in
European countries equal to 2?

t =
y − 2
SE(y)

SE(y) is the standard error of y, computed as:

SE(y) =
sy√

n
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T-statistic

How to interpret the t-statistic? Intuitively, the smaller (larger) |t|, the
closer (farther) we are to (from) the value of H0

But, how large should be t to reject H0? We don’t want to make errors
when taking this decision

By CLT, when n → ∞, t = y−2
SE(y) ∼ N(0, 1)
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T-statistic

Decision rule to reject H0: allow for a probability α = 5%, at most, to
(incorrectly) reject H0 when H0 is true (α: significance level of a test)
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5% corresponds to the area outside [−1.96,+1.96] in a distribution
N(0, 1) (1.96 being a critical value)

So, we reject H0 if |t| > 1.96 with a (1 − α)% = 95% confidence level
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T-statistic

Example. Is the mean level of trust in political parties, µy, in
European countries equal to 2?

|t| = 129.65 > 1.96 ⇒ Reject H0

Conclusion: political trust in European countries is different from 2
with a 95% level of confidence
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T-statistic

Example. Is the mean level of trust in political parties, µy, in
European countries equal to 3.65?

|t| = 0.28 < 1.96 ⇒ Not reject H0

Conclusion: political trust in European countries is equal to 3.65 with a
95% level of confidence
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Confidence intervals

Because we have a random sample, it is impossible to know the true
population mean, µy, which is estimated by the sample mean, y. But
how accurate is our estimate?

Confidence Interval: range of values that contains the true
population mean with a certain level of confidence (e.g. 95%)

CI0.95 = y ± 1.96 · SE (y) = [3.628; 3.678]
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Confidence intervals

What if we require a more demanding test for the same hypotheses?

• probability of making a wrong decision, as well as significance level of
the test, decreases (e.g. α = 1%)

• larger critical value in N(0, 1) (e.g. 2.58 for α = 1%)

• more difficult to reject (same) H0

• confidence level of the decision increases (e.g. (1 − α) = 99%)

• wider confidence interval containing the true mean (e.g.
CI0.99 = y ± 2.58 · SE (y))

The opposite is true if we require a less demanding test (e.g. α = 10%)
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Test for equality of means in two samples

Example. Is the mean level of trust in political parties in Italy, µIT,
equal to that in the Netherlands, µNL?

Hypotheses: H0 : µIT = µNL and H0 : µIT ̸= µNL

Test statistic: t = yIT−yNL
SE(yIT−yNL)

= 3.122−5.348
0.069 = −32.136

|t| = 32.13 > 1.96 ⇒ Reject H0
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