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Why do we need to talk about probability?

® Most aspects of the world around us have an element of randomness
® Probability theory: Quantifying Randomness

® Some Definitions:
— Outcome (y): (mutually exclusive) result of a Random Process

— Probability (p): proportion of times that a certain outcome is
observed if you repeat a random process many times

— Random Variable (Y): variable (discrete or continuous) that can
take on a set of different values, each with an associated probability



Probability Distributions — Discrete Random Variables

Probability Distribution or Probability Mass Function: list of all
possible values y;, with i =1, ..., N, of the random variable Y and the
probability that each value occurs (frequency): f(Y) = Pr(Y = y;)

Example. European Social Survey, Wave 10 (free to download upon
registration)

. tabulate trstprt

Y /Trust in
political
partie Freq. Percent Cum.
No trust at all 5,671 15.33 15.33
1 2,817 7.62 22.95
2 4,299 11.62 34.57
3 4,784 12.93 47.50
4 4,445 12.02 59.52
Y; 5 6,127 f¥|16.56 76.09
6 3,845 10.40 86.48
7 2,974 8.04 94.52
8 1,403 3.79 98.32
9 387 1.05 99.36
Complete trust 236 0.64 100.00
Total 36,988 100.00


https://ess.sikt.no/en/datafile/f37d014a-6958-42d4-b03b-17c29e481d3d/262?tab=0

Probability Distributions — Graphical Representation
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Trust in Political Parties, 22 European countries, 2020



Probability Distributions — Discr Variables

Cumulative Distribution Function (cdf): probability that the
random variable is less than or equal to a given value:

k
F(Y) = Pr(Y <) = ;f(yi)

. tabulate trstprt

Freq. Percent Cum.

No trust at all 5,671 15.33 15.33

1 2,817 7.62 22.95

2 4,299 11.62 34.57

3 4,784 12.93 47.50

4 4,445 12.02 59.52

Y; 5 6,127 T|16.56| FY)| 76.00

6 3,845 10.40 86.48

7 2,974 8.04 94.52

8 1,403 3.79 98.32

9 387 1.05 99.36

Complete trust 236 0.64 100.00
Total 36,988 100.00




Histograms — Continuous Random Variables

Probability Density Function (pdf): area under pdf between two
values is the probability that the random variable falls between those

two values: f(Y)

Probability Density Function

Density

100,000 simulated observations from Y~N(u=0,0=1)



Moments of a distribution

Measures of Central Tendency

¢ Expected Value, E(Y), or Mean, uy (population mean) or Y (sample
mean) — First moment

® Median: the value y,, that splits the distribution in two equal parts
(50% of the distribution on its left, 50% on its right)

® Mode: the value with the highest frequency



Example: Mean computation

N
Y = piyi +paya + -+ pNYN = Y Pii
i=1

Yi pi biYi
0 0.1533 0

1 0.0762 0.0762
2 0.1162 0.2325
3 0.1293 0.3880
4 0.1202 0.4807
5 0.1656 0.8282
6 0.1040 0.6237
7 0.0804 0.5628
8 0.0379 0.3034
9 0.0105 0.0942
10 0.0064 0.0638

? 3.6535



Comparing distributions with different means

Probability Density Function

1

B Y-N(u=00=1) [ Y~N(u=2,0=1) Y~N(u=-3,0=1)



Moments of a distribution

Measures of Dispersion (second moment)

® (Population) Variance

=piy1 = Y) > +p2y2 = Y)* + .+ pa(yn — Y)?

® Standard Deviation



Example: Variance computation

y Y (y-Y) p p(y,-Y)
0 3.6535 13.3483 0.1533 2.0466
1 3.6535 7.0413 0.0762 0.5363
2 3.6535 2.7342 0.1162 0.3178
3 3.6535 0.4271 0.1293 0.0552
4 3.6535 0.1200 0.1202 0.0144
5 3.6535 1.8130 0.1656 0.3003
6 3.6535 5.5059 0.1040 0.5724
7 3.6535 11.1988 0.0804 0.9004
8 3.6535 18.8917 0.0379 0.7166
9 3.6535 28.5847 0.0105 0.2991
10 3.6535 40.2776 0.0064 0.2570
02 6.0160

Oy 2.4528



Comparing distributions with different variance

Probability Density Function

Density
=

B Y-Nu=00=1) M Y~N(u=0,0=2) Y~N(u=0,0=.5)



g = min{y : F(y) = ¢}

Very important quantiles:

Median: go5

Tertiles: §0.33,90.66

Quartiles: qo.25,90.5,90.75

Quintiles: go.2,90.4,90.6,40.8

Deciles: 40.1,90.2, -, q0.9

® Percentiles: 40.01,40.02/ -+ §0.99



Example: Quantiles in the income distribution

EU Survey on Income and Living Conditions (EU-SILC)

T T T T
0 20000 40000 60000 80000
Equivalised disposable income in 29 European countries (€ per capita)

=== q0.25 q().:? (Me‘ilan) === qﬂ]S Mean q0.99


https://ec.europa.eu/eurostat/web/microdata/european-union-statistics-on-income-and-living-conditions

Example: Quantiles in the income distribution

EU Survey on Income and Living Conditions (EU-SILC)

. summarize hy@20_pc, detail

hy020_pc

Percentiles Smallest

1% 829.7266 0

5% 1999.6 0
10% 2949.156 0 Obs 150,173
25% 5471.836 0 Sum of wgt. 150,173
50% 11885 Mean 15515.85
Largest Std. dev. 13116.37

75% 21810 79829
90% 33109.45 79883.87 Variance 1.72e+08
95% 41715 79924.28 Skewness 1.497488

99% 61120 79996.52 Kurtosis 5.622403


https://ec.europa.eu/eurostat/web/microdata/european-union-statistics-on-income-and-living-conditions

Concepts involving two random variables

Joint Probability Distribution: the joint probability distribution of
two random variables X and Y is the probability that the Y and X
simultaneously take on certain values y; and x;:

f(yirxj) = Pr(Y =y, X = x))
Example: joint distribution of Y (Trust in political parties — recoded)

and X (Voted in last election)
. tabulate trstprt_3 vote, cell

Voted last national election
trstprt_3 Yes No Not eligi Total
Low 11,886 4,631 805 17,322
12.66 2.20 47.36
Medium 10,836 2,342 1,099 14,277
29.63 6.40 39.04
High 3,839 630 504 4,973
10.50 a.» 1.38 13.60
Total 26,561 7,603 2,408 36,572
72.63 20.79 6.58 100.00




Concepts involving two random variables

Conditional Distribution: the conditional distribution of one variable
Y given another variable X is the distribution of Y conditional on X
taking on a specific value x;: f(Y|X) = Pr(Y = y;| X = x)

Example: conditional distribution of Y (Trust in political parties —
recoded) given certain values of X (Voted in last election)

. tabulate trstprt_3 if vote==

trstprt_3 Freq. Percent Cum.
Low 11,886 44.75 44.75
Medium 10,836 @0.80 85.55
High 3,839 14.45 100.00
Total 26,561 100.00



Concepts involving two random variables

Conditional Distribution: the conditional distribution of one variable
Y given another variable X is the distribution of Y conditional on X
taking on a specific value x;: f(Y|X) = Pr(Y = y;|X = x)

Example: conditional distribution of Y (Trust in political parties —
recoded) given certain values of X (Voted in last election)

. tabulate trstprt_3 if vote==

trstprt_3 Freq. Percent Cum.
Low 4,631 60.91 60.91
Medium 2,342 30.80 91.71
High 630 ®.29 100.00
Total 7,603 100.00



Concepts involving two random variables

Conditional Mean: the mean of Y conditional on X taking on a
specific value xy:

Y=fnlX=x0) y1+..+funX =x0) - yn = Ly f (Wil X = xi) -y

Example: conditional mean of Y (Trust in political parties — recoded)
given certain values of X (Voted in last election)

. bysort vote: summarize trstprt_3

-> vote = Yes

Variable Obs Mean Std. dev. Min Max

trstprt_3 26,561 1.697037 .7072946 1 3
—> vote = No

Variable Obs Mean Std. dev. Min Max

trstprt_3 7,603 1.47376 .6442749 1 3

-> vote = Not

Variable Obs Mean Std. dev. Min Max

trstprt_3 2,408 1.875 .726773 1 3



Concepts involving two random variables

Independence: two random variables X and Y are independently
distributed if knowing the value of X provides no information about Y:
fY|X) =Pr(Y =yi| X =x) =Pr(Y =y;)

Example: consider again Y and X; are they independent? No. (i) joint
prob. # product of marginal prob. (ii) conditional prob. # marginal

prob.
. tabulate trstprt_3 vote, column

Voted last national election
trstprt_3 Yes No Not eligi Total
Low 11,886 4,631 805 17,322
44.75 60.91 33.43 47.36
(32.50 12.66 2.20 47.36
Medium 10,836 2,342 1,099 14,277
40.80 30.80 45.64 39.04
(29.63 6.40 3.01 39.04
High 3,839 630 504 4,973
14.45 8.29 20.93 13.60
10.50 1.72 1.38 13.60
Total 26,561 7,603 2,408 36,572
100.00 100.00 100.00 100.00
72.63 20.79 6.58 100.00




Concepts involving two random variables

Covariance: measure of the extent to which two random variables
move together:

N K
Coo(Y,X) = oyx = lel(y, =) (xj = X) - f(Y =y, X =xj)
i=1j=

Example: covariance between Y and X

Variable | Obs Mean Std. dev. Min Max
trstprt_3 36,572 1.662337 .7040006 1 3
vote 36,572 1.339577 .5966235 1 3

. tabulate trstprt_3 vote, cell

Voted last national election
trstprt_3 Yes No Not eligi Total
Low 11,886 4,631 805 17,322
(32.50 12.66 2.20) 47.36
Medium 10,836 2,342 1,099 14,277
(29.63 6.40 3.01) 39.04
High 3,839 630 504 4,973
(10.50 1.72 1.38) 13.60
Total 26,561 7,603 2,408 36,572
72.63 20.79 6.58 100.00




Concepts involving two random variables

Example: covariance between Y and X

Cov(Y,X) = oyx = ii(yl -Y) (5= X) f(Y =y;, X =x)
i=1j=

I
™=z
<

|
=l
<
-

I
<

Cov(Y,Y) = 02

. correlate trstprt_3 vote, covariance
(obs=36,572)

| trstpr~3 vote
trstprt_3 .495617
vote | |(-.011199 .35596



Concepts involving two random variables

Correlation: (standardized) measure of the extent to which two
random variables move together:

oyx Cov(Y X)
Oy - 0x \/Var - Var(X)

Corr(Y,X) =

e —1<Corr(Y,X) <1
® Corr(Y,X) =0 — X and Y are uncorrelated

Example: correlation between Y and X

. correlate trstprt_3 vote
(obs=36,572)

| trstpr~3 vote
trstprt_3 1.0000
vote -0.0267, 1.0000



Why do we need Statistics?

We cannot run a survey of a full population whenever we want to
answer questions about unknown characteristics of its distribution.

Statistical Inference: we can learn about a characteristics of a
population by selecting a random sample of that population

Econometrics uses three main statistical methods:

® Estimation: computing a Best Guess numerical value for an unknown
characteristic (parameter) of a population distribution, from a sample
of data

¢ Hypothesis testing: formulating a hypothesis about the population
and use sample evidence to decide if it is true

® Confidence Intervals: use the sample data to calculate a range of
statistically plausible values around the best guess for the unknown
population characteristic



Estimators and their Properties

® We want to know the mean value of y in a population (i, is the
parameter to be estimated)

® Draw a random sample of n independently and identically distributed
(iid) observations y1,Y2, ..., Yn

® Compute the sample average i = w

® Y is an estimator of y, (a function of the sample)

® 7/ is a random variable, because it is influenced by the random draw of
the sample (the individual you draw as first or it" observation yiis
random!)

® The estimate (the actual value that ¥ takes) is not random variable,
but a scalar (a number)

® |f you repeat the random draw from the same population a second
time, the same estimator (random variable) ¥ will produce a different
estimate (scalar)

® As all random variables i has a probability distribution called sampling
distribution



Example. Sampling distribution of ¥

Sample 1

(1 +2+40++3)

y 1.5
n =100 100
Population
Sample 2
n = 100,000 Qi3+ +2) ),
n =100 100
E(y) =p, =2
Sample 3 . B40+14--40)
y= =18

n =100 100

E(y)=15-1/3+22-1/3+1.8-1/3 = 1.833



Example. Sampling distribution of i

Estimator (random variable) i has its sampling distribution

<

Sample 1 _(+240443) o
n =100 100 '
Sample 2
n =100
Sample 3
n =100

Sample N
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S Qt143442)
= 100 =4

n = 100,000
E@)=py =2

—(3+0+1+'"+°)—1a
- 100 o

<

=23

<%

n =100

Sampling distribution of the estimator 3

/\
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Estimators and their Properties

What makes an estimator ‘good’? A good estimator gets as close as
possible to the unknown true value of the population parameter.
Desirable properties of a good estimator:

® Unbiasedness: an estimator is biased if it's different, on average, from
the true value of the parameter that is being estimated; draws from the
same population should be random to satisfy the property

Example. the average of the sampling distribution of ¥, E(y), should
be equal to the true value of the population mean, ji; if not,

bias = E(y) — uy # 0

e Consistency: an estimator is consistent if it gets closer, as the sample
size grows, to the true value of the parameter that is being estimated,;
uncertainty about y, decreases as 7 increases



Statistical inference

Problem: we have only one sample! We have to infer as much
information as possible from the one sample we have

Solution: we use the variation in the one sample available to
approximate the sampling distribution of our estimator i

Intuition: the larger the sample we draw, the better we can
approximate mean and variance of the sampling distribution

We have two tools:

® Law of Large Numbers: when sample size n — oo then y — p, and
sﬁ — U'yz (y: sample mean; sﬁ: sample variance)

¢ Central Limit Theorem (CLT) + Law of Large Numbers: when
sample size n — o0, then the sampling distribution of i can be

o,

2
approximated by a normal: y ~ N <yy, ;)



Hypothesis Testing

Statistics let us test hypotheses about the world around us formulated
as yes/no questions.

Example. Is the mean level of trust in political parties, yy, in
European countries equal to 2 (on a 0 - 10 scale)?

Questions like this create two mutually exclusive statements, only one
of which can be true:

— Null hypothesis: baseline statement we believe to be true

— Alternative hypothesis: statement that holds true if the null is not

H1:]1y#2

Problem for policy analysts: decide whether to accept Hy or to reject
Hy (in favor of Hy) using our one (random) sample and computing %



T-statistic

The t-statistic is a standardized form of the sample average

Example. |s the mean level of trust in political parties, yy, in
European countries equal to 27

- SE(®)
SE(Yy) is the standard error of ¥, computed as:

SE(y) = bf’

. ttest trstprt = 2

One-sample t test

Variable Obs Mean Std. err.  Std. dev. [95% conf. intervall

trstprt | (36,988 2.452794) 3.628539  3.678534
mean = mean(trstprt)

HO: mean = 2 Degrees of freedom = 36987
Ha: mean < 2 Ha: mean != 2 Ha: mean > 2

Pr(T < t) = 1.0000 Pr(|T| > |t]) = 0.0000 Pr(T > t) = 0.0000



T-statistic

How to interpret the t-statistic? Intuitively, the smaller (larger) |¢|, the
closer (farther) we are to (from) the value of Hy

But, how large should be t to reject Hy? We don’t want to make errors
when taking this decision

By CLT, when 11 — oo, t = s%) ~ N(0,1)

Standard Normal Distribution N(u=0,0=1)

ﬁ3 [\

t-statistic



T-statistic

Decision rule to reject Hy: allow for a probability & = 5%, at most, to
(incorrectly) reject Hy when Hy is true (a: significance level of a test)

Standard Normal Distribution N(u=0,0=1)

4 /\

3 / \
95%

0
-4 -1.96 0 1.96 4

t-statistic

Rejection region Non-rejection region

5% corresponds to the area outside [—1.96,+1.96] in a distribution
N(0,1) (1.96 being a critical value)
So, we reject Hy if [t| > 1.96 with a (1 — a)% = 95% confidence level



T-statistic

Example. Is the mean level of trust in political parties, yy, in
European countries equal to 27

. ttest trstprt = 2

One-sample t test

Variable Obs Mean Std. err. Std. dev. [95% conf. intervall
trstprt 36,988 3.653536 .0127535 2.452794 3.628539 3.678534
mean = mean(trstprt) t = 129.6532]
HO: mean = 2 Degrees of freedom = 36987
Ha: mean < 2 Ha: mean != 2 Ha: mean > 2
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

|t| = 129.65 > 1.96 = Reject Hy

Conclusion: political trust in European countries is different from 2
with a 95% level of confidence



T-statistic

Example. Is the mean level of trust in political parties, yy, in
European countries equal to 3.657

. ttest trstprt = 3.65

One-sample t test

Variable Obs Mean Std. err.  Std. dev. [95% conf. intervall

trstprt 36,988 3.653536 .0127535 2.452794 3.628539 3.678534

mean = mean(trstprt) t = 0.2773
HO: mean = 3.65 Degrees of freedom = 36987
Ha: mean < 3.65 Ha: mean != 3.65 Ha: mean > 3.65
Pr(T < t) = 0.6092 Pr(|T| > |t]) = 0.7816 Pr(T > t) = 0.3908

|t| = 0.28 < 1.96 = Not reject Hy

Conclusion: political trust in European countries is equal to 3.65 with a
95% level of confidence



Confidence intervals

Because we have a random sample, it is impossible to know the true
population mean, py, which is estimated by the sample mean, j. But
how accurate is our estimate?

Confidence Interval: range of values that contains the true
population mean with a certain level of confidence (e.g. 95%)

Clogs = 7 +1.96 - SE () = [3.628;3.678]

. ttest trstprt = 2

One-sample t test

Variable Obs Mean Std. err. Std. dev. [95% conf. intervall

trstprt 36,988 3.653536 .0127535 2.452794 3.628539 3.678534

mean = mean(trstprt) t = 129.6532
HO: mean = 2 Degrees of freedom = 36987
Ha: mean < 2 Ha: mean != 2 Ha: mean > 2

Pr(T < t) = 1.0000 Pr(|T| > |t]|) = 0.0000 Pr(T > t) = 0.0000



Confidence intervals

What if we require a more demanding test for the same hypotheses?

® probability of making a wrong decision, as well as significance level of
the test, decreases (e.g. &« = 1%)

® larger critical value in N(0,1) (e.g. 2.58 for & = 1%)
® more difficult to reject (same) Hy
e confidence level of the decision increases (e.g. (1 —a) =99%)

® wider confidence interval containing the true mean (e.g.
Clyg9 =y £2.58-SE ())

The opposite is true if we require a less demanding test (e.g. &« = 10%)



Test for equality of means in two samples

Example. Is the mean level of trust in political parties in Italy, pr,
equal to that in the Netherlands, pn?

Hypotheses: Hp : uyr = pne and Hy : pr # N

sepi p o Yr— _3.122-5348 _
Test statistic: t = SEG ) = 0069 — 32.136

. ttest trstprt if cntry=="IT"|cntry=="NL", by(cntry)

Two-sample t test with equal variances

Group Obs Mean Std. err.  Std. dev. [95% conf. intervall

T 2,606 .0444503  2.269145  3.034865  3.209188
NL 1,454 (5.348006)  .0474562 1.80957  5.254915  5.441096

Combined 4,060 3.919212 .0371922 2.369818 3.846295 3.992129
diff -2.225979 .0692673 -2.361781 -2.090177
diff = mean(IT) - mean(NL) t =(-32.1361)

Ho: diff =0 Degrees of freedom = 4058
Ha: diff < @ Ha: diff != 0 Ha: diff > @

Pr(T < t) = 0.0000 Pr(|T| > |t]) = 0.0000 Pr(T > t) = 1.0000

|t| = 32.13 > 1.96 = Reject H
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