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Regression Analysis

Regression is a statistical tool used to study the relationship between:

– Dependent variable (y): outcome/response variable that we want
to predict/explain (also called regressand or left-hand-side
variable)

– Independent variable(s) (x): predictor/explanatory variable(s)
used to explain the dependent variable (also called regressor or
right-hand-side variable)

Goals of regression analysis:

– Formalize the relationship between dependent and independent
variables (modelling)

– Explain the impact of changes of an independent variable on the
dependent variable (inference)

– Predict the value of the dependent variable based on the value of,
at least, one independent variable (prediction)

3/39



Linear Population Model

(Bivariate) linear population model:

y = β0 + β1x + ε

– y is a linear function of x (∆y is assumed to be influenced linearly
by ∆x)

– Error term, ε, accounts for other factors that affect y

– β0 is the intercept/constant term, β1 is the slope parameter

– ‘True’ population parameters β0 and β1 are theoretical, cannot be
observed

– Population parameters can be estimated with sample data under
specific assumptions

– Estimators β̂0 and β̂1 are unbiased thanks to the mean conditional
independence assumption (E (ε|x) = 0)
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Linear Regression Model

Estimation problem: draw a random sample of size n from the
population to estimate β0 and β1

Linear regression model:

yi = β0 + β1xi + εi

After estimation:

ŷi = β̂0 + β̂1xi

– ŷi: predicted value of y for observation i = {1, ..., n}
– β̂0, β̂1: estimates of intercept and slope parameters

– xi: observed value of x for observation i = {1, ..., n}
– β̂0 + β̂1xi: estimated regression line

– ε̂i: estimate of the error term, i.e. residual (it holds ε̂i = yi − ŷi)
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Estimation of regression line – Graphical representation
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Example. Estimation of regression line and prediction of y

• We suspect that students’ scores depend on how many hours per week
they spend studying

• Simulated data for a sample of n = 500 observations

Study (x) Score (y)

5 13
7 15
15 16
20 20
22 21
35 27
37 28
... ... 0

10

20

30

Ex
am

 s
co

re
 (y

)

0 10 20 30 40
Weekly study hours (x)

• We want to obtain a good prediction of students’ scores
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Example. Estimation of regression line and prediction of y

• Suppose to ignore information on study hours (x)

• The regression line becomes ŷi = β̂0 +�
��Z
ZZβ̂1xi (i.e. slope is 0)
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• The best prediction is the mean of y: β̂0 = 20

• How good is this prediction? How well does the regression line fit the
observed data points?
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Example. Estimation of regression line and prediction of y

• Observed data points do not fall on the regression line, but they lie
either above or below it

• To evaluate how well the line fits the data we can measure the
deviation from the data points to the line

• Since ε̂i = yi − ŷi, residuals ε̂i measure such deviation

• Try to sum all residuals: the smaller the sum of residuals, the better
the fit?

• Let’s focus on a few data points for illustration
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Example. Estimation of regression line and prediction of y
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Example. Estimation of regression line and prediction of y

• Positive and negative residuals offset each other (16 − 16 = 0)

• It holds that E(ε̂i) = 0 if β0 is included in the regression model

• We need another summary measure of deviation from data points to
the regression line to evaluate the fit of the line

• Squaring the residuals makes all deviations positive and emphasizes
large ones
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Example. Estimation of regression line and prediction of y
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Ordinary Least Squares (OLS)

• The appropriate measure to evaluate how well the line fits the data is
the Residual Sum of Squares (RSS)

• The smaller RSS, the better the fit

• The Ordinary Least Squares (OLS) method estimates the
parameters of the regression line that minimize RSS
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Ordinary Least Squares (OLS)

• Consider now information on study hours (x)

• The regression line becomes ŷi = β̂0 + β̂1xi (i.e. slope is ̸= 0)
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• How well does the new regression line fit the observed data points?
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Ordinary Least Squares (OLS)

• Residual Sum of Squares (RSS):

RSS =
n

∑
i=1

(ε̂i)
2 =

n

∑
i=1

(yi − ŷi)
2 =

n

∑
i=1

(
yi −

(
β̂0 + β̂1xi

))2

• OLS estimators of parameters:

β̂1 =
∑n

i=1 (xi − x) (yi − y)

∑n
i=1 (xi − x)2 =

Cov(x, y)
Var(x)

β̂0 = y − β̂1x
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Ordinary Least Squares (OLS)

• Let’s focus again on a few data points for illustration: fit the new
regression line and compute RSS

β̂0 = 10.69 β̂1 = 0.462 RSS = 3.874
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Interpretation of OLS estimates

Intercept

• β̂0 is the estimated average value of y when x = 0 (e.g. studying 0
hours would lead to an exam score of 10.69/30)

• Misleading/meaningless if 0 is an unlikely/impossible value for x

• Must be included to ensure that (i) E (ε̂i) = 0, and that (ii) the
regression line passes through the point with coordinates (y, x)

Slope

• β̂1 is the estimated average change in y as a result of a one-unit
change in x (e.g. studying one more hour would lead to an increase in
the exam score of 0.46 units out of 30)

• Also known as marginal effect of x in a linear model, it is constant
across values of x (e.g. same effect when moving from 5 to 6 hours
and from 39 to 40 hours)
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Goodness of fit

• A good regression line explains most of the sample variation in y. How
to measure how much variation the line actually explains?

• Total sample variation in y can be measured through the Total Sum
of Squares (TSS, i.e. a modified version of Var (y)):

TSS =
n

∑
i=1

(yi − y)2 = ESS + RSS

• TSS can be decomposed in a part of variation that is explained by the
model (Explained/Regression/Model Sum of Squares, ESS) and
part attributable to factors other than x, captured by the residuals
(Residual Sum of Squares, RSS):

ESS =
n

∑
i=1

(ŷi − y)2 RSS =
n

∑
i=1

(yi − ŷi)
2
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Decomposition of variation (intuition for one value of y)
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Goodness of fit

• Coefficient of determination: measures the fraction of total variation
in y explained by the model:

R2 =
ESS
TSS

= 1 − RSS
TSS

• If β0 is included in the regression model: 0 ≤ R2 ≤ 1

• If only one indep. variable x is included in the regression model:
R2 = Corr (y, x)2

• If k indep. variables x are included in the regression model, R2

increases by construction without necessarily improving explanation,
and should be adjusted:

R2
= 1 −

RSS
n−k−1

TSS
n−1

≤ R2
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Multiple regression model

• A single independent variable x might not be sufficient to explain y
(e.g. the exam score might depend on study hours, parental education,
gender, etc.)

• The regression model can be improved by including other k
independent variables, getting the following form:

yi = β0 + β1x1,i + β2x2,i + ... + βkxk,i + εi

• β̂1 is the estimated average change in y as a result of a one-unit
change in x1 holding constant the characteristics x2 to xk
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Estimation of a regression plane – Graphical representation
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OLS estimators

β̂k is an estimator of the true population parameter βk. As seen in
Module 1, this implies:

– Sampling distribution: β̂k ≈ N
(

βk, σ2
βk

)
as n → ∞

– Hypothesis testing: H0 : βk = 0 vs H1 : βk ̸= 0

– T-statistic: t = β̂k−0
SE(β̂k)

= β̂k−0√
σ̂2

β̂k

∼ N(0, 1)

– Confidence intervals: CI0.95 = β̂k ± 1.96 · SE
(

β̂k
)
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OLS estimation of: yi = β0 + β1x1,i + β2x2,i + εi

R2 =
ESS
TSS

=
144.75
12708

= 0.0114

R2
= 1 − RSS

n − k − 1

/
TSS

n − 1
= 1 − 12563

2483 − 2 − 1

/
12708

2483 − 1
= 0.0106
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OLS estimation of: yi = β0 + β1x1,i + β2x2,i + εi

tβ̂1
=

β̂1 − 0
SE

(
β̂1
) =

0.047
0.0115

= 4.13 > 1.96 ⇒ Reject H0

CI0.95,β̂1
= β̂1 ± 1.96 · SE

(
β̂1
)
= 0.047 ± 1.96 · 0.0115 = [0.0248; 0.0698]
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Dummy variables

• A dummy variable is a binary variable taking value 0 or 1, used to
indicate the absence/presence of an individual characteristic (e.g.
female/male, employed/unemployed)

• Suppose that in the model yi = β0 + β1x1,i + β2x2,i + εi, x2,i is a
gender dummy variable equal to 0 if i is male or to 1 if i is female

• β̂2 is the estimated average change in y as a result of the characteristic
x2 being present, compared to when x is absent

• The estimated regression model becomes:

– ŷi = β̂0 + β̂1x1,i +�
�S
Ŝβ2 if i is male

– ŷi = β̂0 + β̂1x1,i + β̂2 if i is female

• We can visualize two separate regression lines with same slope but
different intercept, the difference corresponding to the value β̂2
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Dummy variables – Graphical representation

ŷi = 2.467 + 0.055 · x1,i − 0.104 · x2,i
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Dummy variable trap
• Suppose we want to evaluate whether, in Italy, trust in political parties

differs across residents in the North (N), Center (C), or South (S)

• We create 3 dummy variables, each taking value 1 if i lives in the
respective area N, C, or S and 0 otherwise (i.e. xN,xC,xS), and
estimate the model: yi = β0 + βNxN,i + βCxC,i + βSxS,i + εi

• Dummy variable trap: including all 3 dummies at the same time
determines perfect multicollinearity; the information provided by any
two dummies is sufficient to determine the value of the third dummy,
which becomes redundant

Example: if i doesn’t live neither in the North (xN,i = 0) nor in the
South (xS,i = 0), then i lives necessarily in the Center (xC,i = 1) and
there is no need to include xC,i in the model

The redundant dummy excluded from estimation represents the
reference category to interpret the parameter estimates of the included
dummies
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Dummy variable trap

• Suppose we want to evaluate whether, in Italy, trust in political parties
differs across residents in the North (N), Center (C), or South (S)

• We create 3 dummy variables, each taking value 1 if i lives in the
respective area N, C, or S and 0 otherwise (i.e. xN,xC,xS), and
estimate the model: yi = β0 + βNxN,i + βCxC,i +���HHHβSxS,i + εi

• Dummy variable trap: including all 3 dummies at the same time
determines perfect multicollinearity; the information provided by any
two dummies is sufficient to determine the value of the third dummy,
which becomes redundant

• If i doesn’t live neither in the North (xN,i = 0) nor in the Center
(xC,i = 0), then i lives necessarily in the South (xS,i = 1) and there is
no need to include xS in the model

• The redundant dummy excluded from estimation represents the
reference category to interpret the parameter estimates of the included
dummies
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Dummy variable trap – OLS estimation

• Although we tried to include xS, STATA excluded it to avoid the
dummy variable trap: South is the reference category

• β̂N is the difference in political trust between the North and the
reference, i.e. the South, holding education constant; β̂C is the
difference between the Center and the South
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Interactions

• The relationship between xk and y might differ depending on the level
of another independent variable xj where k ̸= j: in such cases,
interactions must be added to the model

• Interacting means multiplying two or more variables, thus generating
additional parameters whose estimates require careful interpretation

• The regression model with an interaction between x1 and x2 is:

yi = β0 + β1x1,i + β2x2,i + β3 (x1,i × x2,i) + εi

• When including an interaction term, x1 × x2, it’s important to include
also the main terms separately, x1 and x2

• Three forms of interaction are possible, depending on the variables
involved (continuous or categorical)

30/39



Interaction #1: continuous × continuous

ŷi = β̂0 + β̂1Agei + β̂2Educationi + β̂3 (Agei × Educationi)

• β̂1: 1 more year of age increases interest in politics by 0.004 when education = 0

• β̂2: 1 more year of education increases interest in politics by 0.043 when age = 0

• β̂3: 1 more year of age increases interest in politics by 0.0004 for every additional
year of education (or viceversa)
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Interaction #1: continuous × continuous – Graph
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• Plot a line showing the relationship between y and one of the interacted continuous
variable for each chosen level of the other interacted continuous variable

• Interest in politics increases with age at any level of education, but the increase is
larger for people with more education years

32/39



Interaction #2: categorical × continuous

ŷi = β̂0 + β̂1Femalei + β̂2Educationi + β̂3 (Femalei × Educationi)

• β̂1: females have lower interest in politics by 0.173 when education = 0

• β̂2: 1 more year of education increases interest in politics by 0.061 for males

• β̂3: females have lower interest in politics by 0.006 for every additional year of
education (or viceversa)

33/39



Interaction #2: categorical × continuous – Graph
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• Plot a line showing the relationship between y and the interacted continuous variable
for each level of the interacted categorical variable

• Interest in politics increases with education for both sexes, but the increase is
smaller for females
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Interaction #3: categorical × categorical

ŷi = β̂0 + β̂1Femalei + β̂2Non-nativei + β̂3 (Femalei × Non-nativei)

• β̂1: female natives have lower interest in politics than male natives by 0.258

• β̂2: male non-natives have lower interest in politics than male natives by 0.026

• β̂3: females have higher interest in politics than males by 0.087 among non-natives
compared to natives 35/39



Interaction #3: categorical × categorical – Graph

• Plot a line showing the relationship between y and one of the interacted categorical
variables for each level of the other interacted categorical variable

• Interest in politics is larger for males than females, but the gap is smaller when
comparing non-natives to natives
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Regressions with non-linear terms

• In linear models the marginal effect of x is constant across values of
x, i.e. y changes by the same amount when a one-unit change occurs
at low or high levels of x

• Good for intuition and interpretation, less good for accurate modelling
and prediction

• Solution: x can also be included in the model non-linearly by including
higher order polynomials of x (e.g. quadratic, x2, cubic, x3, quartic, x5,
etc.)

• The marginal effect of x becomes not constant across values of x, i.e.
y changes by a different amount when a one-unit change occurs at low
or high levels of x
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Regressions with non-linear terms – Example

Example. Let’s model trust in political parties, y, as function of age, x

Estimating ŷi = β̂0 + β̂1xi produces a poor linear fit

Estimating ŷi = β̂0 + β̂1xi + β̂1x2
i produces a nice quadratic fit
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OLS assumptions: summary

• Population model linear in parameters: y = β0 + β1x + ε

• Random sampling: yi = β0 + β1xi + εi

• Sample variation in the explanatory variable: β̂1 = ∑n
i=1(xi−x)(yi−y)
∑n

i=1(xi−x)2

• Mean conditional independence: E (ε|x) = 0

• Constant variance (homoskedasticity): Var (ε|x) = σ2
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