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Regression Analysis

Regression is a statistical tool used to study the relationship between:

— Dependent variable (y): outcome/response variable that we want
to predict/explain (also called regressand or left-hand-side
variable)

— Independent variable(s) (x): predictor/explanatory variable(s)
used to explain the dependent variable (also called regressor or
right-hand-side variable)

Goals of regression analysis:
— Formalize the relationship between dependent and independent
variables (modelling)

— Explain the impact of changes of an independent variable on the
dependent variable (inference)

— Predict the value of the dependent variable based on the value of,
at least, one independent variable (prediction)



Linear Population Model

(Bivariate) linear population model:

y=Ppo+pix+e

— yis a linear function of x (Ay is assumed to be influenced linearly
by Ax)

— Error term, ¢, accounts for other factors that affect y
— PBo is the intercept/constant term, fB; is the slope parameter

— ‘True’ population parameters By and B; are theoretical, cannot be
observed

— Population parameters can be estimated with sample data under
specific assumptions

— Estimators By and 31 are unbiased thanks to the mean conditional
independence assumption (E (¢]x) = 0)



Linear Regression Model

Estimation problem: draw a random sample of size n from the
population to estimate B and 1

Linear regression model:

yi = Po+ pixi+ &

After estimation:

i = Po + Pixi
— ;i predicted value of y for observation i = {1,...,n}
- BO, [31: estimates of intercept and slope parameters
— x;: observed value of x for observation i = {1,...,n}
- ,30 + ﬁlxi: estimated regression line

— &;: estimate of the error term, i.e. residual (it holds & = y; — ;)



Estimation of regression line — Graphical representation




Example. Estimation of regression line and prediction of y

® \We suspect that students’ scores depend on how many hours per week
they spend studying

® Simulated data for a sample of n = 500 observations

Study (x) | Score (y)
5 13
7 15
15 16
20 20
22 21
35 27
37 28

® \We want to obtain a good prediction of students’ scores
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Example. Estimation of regression line and prediction of y
® Suppose to ignore information on study hours (x)

® The regression line becomes ; = Bo —i—% (i.e. slope is 0)

+-----——-——-——— >~

0
.

LY .c.-: .

en watSECM e Wl

2 k]

Exam score (y)
s
!

_
=)
I

0

® The best prediction is the mean of y: By = 20

® How good is this prediction? How well does the regression line fit the
observed data points?



Example. Estimation of regression line and prediction of y

® Observed data points do not fall on the regression line, but they lie
either above or below it

® To evaluate how well the line fits the data we can measure the
deviation from the data points to the line

® Since &; = y; — #};, residuals &; measure such deviation

® Try to sum all residuals: the smaller the sum of residuals, the better
the fit?

® |et's focus on a few data points for illustration



Example. Estimation of regression line and prediction of y
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Example. Estimation of regression line and prediction of y

Positive and negative residuals offset each other (16 — 16 = 0)

It holds that E(¢;) = 0 if By is included in the regression model

We need another summary measure of deviation from data points to
the regression line to evaluate the fit of the line

® Squaring the residuals makes all deviations positive and emphasizes
large ones



Example. Estimation of regression line and prediction of y
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Ordinary Least Squares (OLS)

® The appropriate measure to evaluate how well the line fits the data is
the Residual Sum of Squares (RSS)

® The smaller RSS, the better the fit

® The Ordinary Least Squares (OLS) method estimates the
parameters of the regression line that minimize RSS



Ordinary Least Squares (OLS)

® Consider now information on study hours (x)
® The regression line becomes §; = Bo + B1x; (i.e. slope is # 0)
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® How well does the new regression line fit the observed data points?



Ordinary Least Squares (OLS)

® Residual Sum of Squares (RSS):

n

RSS =Y (&) =

i=1 i

S (i — (Bo+ Prxi))?

i=1

(vi — )

M:

Il
—_

® QLS estimators of parameters:

_ L (=X (yi—y) _ Cov(x,y)
T Gof Vart)

Bo=7— pix

B



Ordinary Least Squares (OLS)

® |et's focus again on a few data points for illustration: fit the new

regression line and compute RSS
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Bo = 10.69 B1 = 0.462 RSS = 3.874



Interpretation of OLS estimates

Intercept

° BO is the estimated average value of y when x = 0 (e.g. studying 0
hours would lead to an exam score of 10.69/30)

® Misleading/meaningless if 0 is an unlikely/impossible value for x

® Must be included to ensure that (i) E (¢;) = 0, and that (ii) the
regression line passes through the point with coordinates (¥, X)

Slope

e j is the estimated average change in y as a result of a one-unit
change in x (e.g. studying one more hour would lead to an increase in
the exam score of 0.46 units out of 30)

® Also known as marginal effect of x in a linear model, it is constant
across values of x (e.g. same effect when moving from 5 to 6 hours
and from 39 to 40 hours)



Goodness of fit

® A good regression line explains most of the sample variation in y. How
to measure how much variation the line actually explains?

® Total sample variation in i can be measured through the Total Sum
of Squares (TSS, i.e. a modified version of Var (y)):

n
TSS =Y (yi —y)* = ESS + RSS
i=1
® TSS can be decomposed in a part of variation that is explained by the
model (Explained/Regression/Model Sum of Squares, ESS) and
part attributable to factors other than x, captured by the residuals
(Residual Sum of Squares, RSS):

n n

ESS=Y (5i—-9)*  RSS=Y (yi—9)°

i=1 i=1



Decomposition of variation (intuition for one value of y)




Goodness of fit

e Coefficient of determination: measures the fraction of total variation
in y explained by the model:

ESS RSS

R=_—-=1———
TSS TSS

® |f Bo is included in the regression model: 0 < RZ<1

® |f only one indep. variable x is included in the regression model:
R2 = Corr (y,x)*

® If k indep. variables x are included in the regression model, R?
increases by construction without necessarily improving explanation,
and should be adjusted:




Multiple regression model

® A single independent variable x might not be sufficient to explain y
(e.g. the exam score might depend on study hours, parental education,
gender, etc.)

® The regression model can be improved by including other k
independent variables, getting the following form:

Vi = Bo+ Bix1,; + Baxoi+ ... + PiXki + €

e f; is the estimated average change in y as a result of a one-unit
change in x1 holding constant the characteristics xp to xi



Estimation of a regression plane — Graphical representation

; = Bo + Bix1; + Boxa,




OLS estimators

Bk is an estimator of the true population parameter Bi. As seen in
Module 1, this implies:

— Sampling distribution: 3, ~ N <,Bk, U§k> asn — oo

— Hypothesis testing: Hy: By =0 vs Hj: B #0

—_ - H ic: = M = Bk*O ~Y
T-statistic: ¢ SECAY) = N(0,1)

— Confidence intervals: Clyos = B = 1.96 - SE (By)



S estimation of: y; = Bo + B1x1; + Baxzi + €

. regress trstprt eduyrs agea if cntry=="IT"

Source Ss df MS Number of obs =
F(2, 2480) = 14.29
Model (144.747683) 2 72.3738417 Prob > F = 0.0000
Residual | (12563.2878) 2,480 5.06584184 R-squared = (e.0114
Adj R-squared = 0.0106
Total 12708.0354 2,482 5.12007874 Root MSE = 2.2507
trstprt | Coefficient Std. err. t P>|t| [95% conf. intervall
eduyrs .0473376 .011471 4.13 0.000 .0248439 .0698312
agea -.0041704 .0026174 -1.59 0.111 -.009303 .0009622
_cons 2.712842 .2349016 11.55 0.000 2.252218 3.173465
, ESS 14475 0.0114
TSS 12708 ’
1 RSS TSS 1 12563 12708 0.0106
—k—-1 -1 2483 —2 -1/ 2483 —1 ’



S estimation of: y; = By + P1x

i+ Boxoi+ €

. regress trstprt eduyrs agea if cntry=="IT"

Source SS df MS Number of obs = 2,483
F(2, 2480) = 14.29
Model 144.747683 2 72.3738417 Prob > F = 0.0000
Residual 12563.2878 2,480 5.06584184 R-squared = 0.0114
Adj R-squared = 0.0106
Total 12708.0354 2,482 5.12007874 Root MSE = 2.2507
trstprt | Coefficient Std. err. t P>|t| [95% conf. intervall
eduyrs .0473376) [ .011471 0.000 (10248439 .0698312
agea -.0041704 .0026174 -1.59 0.111 -.009303 .0009622
_cons 2.712842 .2349016 11.55 0.000 2.252218 3.173465
_ p1—=0 0.047

Br7 SE(By) 00115

=4.13 > 1.96 = Reject Hj

Clygs 3, = P1 £1.96 - SE (f1) = 0.047 +1.96 - 0.0115 = [0.0248;0.0698]



Dummy variables

A dummy variable is a binary variable taking value 0 or 1, used to
indicate the absence/presence of an individual characteristic (e.g.
female/male, employed /unemployed)

Suppose that in the model y; = Bo + B1x1; + Bax2i + €, xp; is a
gender dummy variable equal to 0 if i is male or to 1 if i is female

BZ is the estimated average change in y as a result of the characteristic
Xp being present, compared to when x is absent

The estimated regression model becomes:

N

- 9i=po+ lel,z‘ —1—2% if i is male

- 0= ,Bo + B1x1,1' + BZ if i is female

We can visualize two separate regression lines with same slope but
different intercept, the difference corresponding to the value B



Dummy variables — Graphical representation
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Dummy variable trap

® Suppose we want to evaluate whether, in Italy, trust in political parties
differs across residents in the North (N), Center (C), or South (S)

® We create 3 dummy variables, each taking value 1 if i lives in the
respective area N, C, or S and 0 otherwise (i.e. xy,Xc,Xs), and
estimate the model: y; = Bo + BnxN,i + Bcxci + Bsxsi + €

® Dummy variable trap: including all 3 dummies at the same time
determines perfect multicollinearity; the information provided by any
two dummies is sufficient to determine the value of the third dummy,
which becomes redundant



Dummy variable trap

Suppose we want to evaluate whether, in Italy, trust in political parties
differs across residents in the North (N), Center (C), or South (S)

We create 3 dummy variables, each taking value 1 if i lives in the
respective area N, C, or S and 0 otherwise (i.e. xy,xc,Xs), and

estimate the model: y; = Bo + Bnxn; + Bcxc,i +M+ &

Dummy variable trap: including all 3 dummies at the same time
determines perfect multicollinearity; the information provided by any
two dummies is sufficient to determine the value of the third dummy,
which becomes redundant

If 7 doesn't live neither in the North (xy; = 0) nor in the Center
(xci = 0), then i lives necessarily in the South (xs; = 1) and there is
no need to include xg in the model

The redundant dummy excluded from estimation represents the
reference category to interpret the parameter estimates of the included
dummies



Dummy variable trap — OLS estimation

. regress trstprt eduyrs north center south if cntry==

note: south omitted because of collinearity.

™

Source SS df MS Number of obs = 2,516
F(3, 2512) = 12.00
Model | 182.209659 3 60.7365531 Prob > F = 0.0000
Residual | 12710.0272 2,512 5.05972421 R-squared = 0.0141
Adj R-squared = 0.0130
Total | 12892.2369 2,515 5.12613793 Root MSE = 2.2494
trstprt | Coefficient Std. err. t P>|t| [95% conf. intervall
eduyrs .056178  .0105909 5.30 0.000 .0354102 .0769458
(Cnorth [ .2937215) .0996418 2.95 0.003 .098333  .4891099
(center | .1344463) .1332165 1.01 0.313 -.126779 .3956716
Csouth | 0 (omitted)
_cons 2.228934  .1532395  14.55 0.000 1.928446  2.529423

® Although we tried to include x5, STATA excluded it to avoid the
dummy variable trap: South is the reference category

e Ay is the difference in political trust between the North and the
reference, i.e. the South, holding education constant; ¢ is the
difference between the Center and the South



Interactions

® The relationship between x; and ¥ might differ depending on the level
of another independent variable x; where k # j: in such cases,
interactions must be added to the model

® |nteracting means multiplying two or more variables, thus generating
additional parameters whose estimates require careful interpretation

® The regression model with an interaction between x; and x; is:

Vi = Po+ B1x1,;i + Baxai + B3 (X1, X X2,i) + &

® When including an interaction term, x; X Xp, it's important to include
also the main terms separately, x1 and x»

® Three forms of interaction are possible, depending on the variables
involved (continuous or categorical)



Interaction #1: continuous X continuous

i = Bo + B1Age; + BaEducation; + B3 (Age; x Education;)

. regress polintr agea eduyrs c.agea#c.eduyrs

Source SS df MS Number of obs = 36,613

F(3, 36609) = 1514.81

Model 3423.22592 3 1141.07531 Prob > F = 0.0000

Residual 27576.7646 36,609 .753278282 R-squared = 0.1104

Adj R-squared = 0.1104

Total 30999.9905 36,612 .846716665 Root MSE = .86792
polintr | Coefficient Std. err. t P>|t| [95% conf. interval

( aaea .0046829) .0008267 5.66 0.000 .0030625 .0063034
leduzrs .0435676) .0036624 11.90 0.000 .0363891 .0507461

c.agea#c.eduyrs .0004698) .0000635 7.40 0.000 .0003454 .0005942

_cons .1558196  .0496646 3.14 0.002 .0584756 .2531635

° 31: 1 more year of age increases interest in politics by 0.004 when education = 0
° 32: 1 more year of education increases interest in politics by 0.043 when age = 0

° B3: 1 more year of age increases interest in politics by 0.0004 for every additional
year of education (or viceversa)



Interaction #1: continuous X continuous — Graph

Interest in politics (y)

Education years

= 1t quartile
= Median

15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90

® Plot a line showing the relationship between y and one of the interacted continuous
variable for each chosen level of the other interacted continuous variable

® Interest in politics increases with age at any level of education, but the increase is
larger for people with more education years



Interaction #2: categorical X continuous

i = Bo + B1Female; + ByEducation; + B3 (Female; x Education;)

. regress polintr i.gndr eduyrs i.gndr#c.eduyrs

Source SS df MS Number of obs = 36,864
F(3, 36860) = 1154.50

Model 2683.43116 3 894.477055 Prob > F = 0.0000
Residual 28558.126 36,860 .774772817 R-squared = 0.0859
Adj R-squared = 0.0858

Total 31241.5572 36,863 .847504467 Root MSE = .88021
polintr | Coefficient Std. err. t P>|t| [95% conf. interval

gndr
(Female —.17373) .0309238 -5.62 0.000 -.2343415 -.1131186

eduyrs .0616628) .0016784 36.74 0.000 .058373 .0649526

gndr#c.eduyrs
Female ~-.0060462 .0022606 -2.67 0.007 -.010477 -.0016153

_cons .596249  .0229519 25.98 0.000 .5512627 .6412353

° Bl: females have lower interest in politics by 0.173 when education = 0
° ﬁg: 1 more year of education increases interest in politics by 0.061 for males

° E3: females have lower interest in politics by 0.006 for every additional year of
education (or viceversa)



Interaction #2: categorical X continuous — Graph
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® Plot a line showing the relationship between 1 and the interacted continuous variable
for each level of the interacted categorical variable

® |nterest in politics increases with education for both sexes, but the increase is
smaller for females



Interaction #3: categorical X categorical

i = Bo + B1Female; + ByNon-native; + B3 (Female; x Non-native;)

. regress polintr i.gndr i.brncntr i.gndr#i.brncntr

Source SS df MS Number of obs = 37,486

F(3, 37482) = 238.58

Model 595.383619 3 198.461206 Prob > F = 0.0000

Residual 31179.3323 37,482 .831848148 R-squared = 0.0187

Adj R-squared = 0.0187

Total 31774.7159 37,485 .847664823 Root MSE = .91206

polintr | Coefficient Std. err. t P>|t]| [95% conf. intervall
gndr

( Female —.2584995) .0098587 -26.22 0.000 -.2778228 -.2391762
brncntr

( No -.0267188) .0252232 -1.06 0.289 -.076157 .0227193
gndr#brnentr

(Female#No .0875409 .0344135 2.54 0.011 .0200895 .1549923

_cons 1.399612 .0072143 194.01 0.000 1.385472 1.413752

° 31: female natives have lower interest in politics than male natives by 0.258
° 32: male non-natives have lower interest in politics than male natives by 0.026

° B3: females have higher interest in politics than males by 0.087 among non-natives
compared to natives



Interaction #3: categorical X categorical — Graph
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® Plot a line showing the relationship between y and one of the interacted categorical
variables for each level of the other interacted categorical variable

® |Interest in politics is larger for males than females, but the gap is smaller when
comparing non-natives to natives



Regressions with non-linear terms

® |n linear models the marginal effect of x is constant across values of
x, i.e. y changes by the same amount when a one-unit change occurs
at low or high levels of x

® Good for intuition and interpretation, less good for accurate modelling
and prediction

® Solution: x can also be included in the model non-linearly by including
higher order polynomials of x (e.g. quadratic, x2, cubic, 23, quartic, X0,

etc.)

® The marginal effect of x becomes not constant across values of x, i.e.
y changes by a different amount when a one-unit change occurs at low
or high levels of x



Regressions with non-linear terms — Example

Example. Let's model trust in political parties, y, as function of age, x
Estimating i/; = BO + lei produces a poor linear fit

Estimating /; = 30 + le,' + ﬁlxl-z produces a nice quadratic fit

Trust in political parties (y)

w
I

= Linear fit (R>=.05)

S —— Quadratic fit (R*=.65) _




OLS assumptions: summary

® Population model linear in parameters: y = Bo + B1x +¢
® Random sampling: y; = Bo + B1X; + &
® Sample variation in the explanatory variable: [31 = LoDy

2
i1 (xi—X)

Mean conditional independence: E (g|x) =0

Constant variance (homoskedasticity): Var (e|x) = o
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